MetaDL: A Digital Library of Metadata for Sensitive or Complex Research Data

  • Fillia Makedon
  • James Ford
  • Li Shen
  • Tilmann Steinberg
  • Andrew Saykin
  • Heather Wishart
  • Sarantos Kapidakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2458)


Traditional digital library systems have certain limitations when dealing with complex or sensitive (e.g. proprietary) data. Collections of digital libraries have to be accessed individually and through non-uniform interfaces. By introducing a level of abstraction, a Meta- Digital Library or MetaDL, users gain a central access portal that allows for prioritized queries, evaluation and rating of the results, and secure negotiations to obtain primary data. This paper demonstrates the MetaDL architecture with an application in brain imaging research, BrassDL, the Brain Support Access System Digital Library. BrassDL is currently under development. This paper describes a theoretical framework behind it, addressing aspects from metadata extraction and system-supported negotiations to legal, ethical and sustainability issues.


Primary Data Digital Library fMRI Data User Query Data Provider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Andres, N. Mouaddib, K. Ono, and A. Zhang. Metadata model, resource discovery, and querying on large scale multidimensional datasets: The GEREQ project. In Kyoto International Conference on Digital Libraries, pages 83–90, 2000.Google Scholar
  2. [2]
    M. Baldonado, C.-C. K. Chang, L. Gravano, and A. Paepcke. The Stanford Digital Library metadata architecture. International Journal on Digital Libraries, 1(2):108–121, 1997.CrossRefGoogle Scholar
  3. [3]
    J. S. Barrett and S. P. J. Koprowski. The epiphany of data warehousing technologies in the pharmaceutical industry. International Journal of Clinical Pharmacology and Therapeutics, 40(3):S3–13, March 2002.Google Scholar
  4. [5]
    J. M. Carazo and E. H. K. Stelzer. The BioImage database project: Organizing multidimensional biological images in an object-relational database. Journal of Structural Biology, 125:97–102, 1999.CrossRefGoogle Scholar
  5. [6]
    M. Chicurel. Databasing the brain. Nature, 406:822–825, August 2000.Google Scholar
  6. [7]
    C. Crasto, L. Marenco, P. Miller, and G. Shepherd. Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Research, 30(1):354–360, 2002.CrossRefGoogle Scholar
  7. [9]
    European Computerised Human Brain Database (ECHBD).
  8. [10]
    J. Ford, F. Makedon, L. Shen, T. Steinberg, A. Saykin, and H. Wishart. Evaluation metrics for user-centered ranking of content in MetaDLs. In Fourth DELOS Workshop on Evaluation of digital libraries: Testbeds, measurements, and metrics, Budapest, Hungary, June 2002.Google Scholar
  9. [11]
    P. T. Fox and J. L. Lancaster. Mapping context and content: the BrainMap model. Nature Reviews Neuroscience, 3(4):319–321, 2002.CrossRefGoogle Scholar
  10. [12]
    J. Frew, M. Freeston, N. Freitas, L. Hill, G. Janee, K. Lovette, R. Nideffer, T. Smith, and Q. Zheng. The Alexandria Digital Library architecture. International Journal on Digital Libraries, 2(4):259–268, 2000.CrossRefGoogle Scholar
  11. [13]
    D. Gardner, M. Abato, K. H. Knuth, R. DeBellis, and S. M. Erde. Dynamic publication model for neurophysiology databases. Philosophical Transactions of the Royal Society of London: Biological Sciences, 356(1412):1229–1247, 2001.CrossRefGoogle Scholar
  12. [14]
    D. Gardner, K. H. Knuth, M. Abato, S. M. Erde, T. White, R. DeBellis, and E. P. Gardner. Common data model for neuroscience data and data model exchange. Journal of the American Medical Informatics Association, 8(1):103–104, 2001.Google Scholar
  13. [15]
    M. Gelobter. Public data-archiving: a fair return on publicly funded research. Psycoloquy: 3(56) Data Archive (3), 1992.Google Scholar
  14. [17]
    M. A. Gonçalves, R. K. France, and E. A. Fox. MARIAN: Flexible interoperability for federated digital libraries. In Proceedings of ECDL 2001, the 5th European Conference on Research and Advanced Technology for Digital Libraries, pages 173–186, Darmstadt, Germany, September 2001. Springer.Google Scholar
  15. [18]
    J. S. Grethe, J. D. Van Horn, J. B. Woodward, S. Inati, P. J. Kostelec, J. A. Aslam, D. Rockmore, D. Rus, and M. S. Gazzaniga. The fMRI Data Center: An introduction. NeuroImage, 13(6):S135, 2001.CrossRefGoogle Scholar
  16. [19]
    C. Houstis and S. Lalis. ARION: An advanced lightweight software system architecture for accessing scientific collections. Cultivate Interactive, 4, May 2001.Google Scholar
  17. [20]
    S. Kapidakis, F. Makedon, L. Shen, T. Steinberg, and J. Ford. A negotiation model for mediated sharing of private digital data, 2002. In preparation.Google Scholar
  18. [21]
    S. H. Koslow. Should the neuroscience community make a paradigm shift to sharing primary data? (editorial). Nature Neuroscience, 3:863–865, September 2000.Google Scholar
  19. [22]
    S. H. Koslow. Sharing primary data: A threat or asset to discovery? (editorial). Nature Reviews Neuroscience, 3:311–313, April 2002.Google Scholar
  20. [23]
    D. Krotz. PET and MRI race to detect early Alzheimer s., January 2001.
  21. [24]
    E. Marshall. Downloading the human brain with security. Science, 289(5488): 2250, September 2000.CrossRefGoogle Scholar
  22. [25]
    E. Marshall. A ruckus over releasing images of the human brain. Science, 289(5484):1458–1459, September 2000.CrossRefGoogle Scholar
  23. [26]
    E. Marshall. DNA sequencer protests being scooped with his own data. Science, 295(5558):1206–1207, February 2002.CrossRefGoogle Scholar
  24. [29]
    P. Miller. Collected wisdom. D-Lib Magazine, 6(9), September 2000.Google Scholar
  25. [30]
    The Organization for Human Brain Mapping (OHBM).
  26. [31]
    L. Roberts, R. J. Davenport, E. Pennisi, and E. Marshall. A history of the Human Genome Project. Science, 291(5507):1195, 2001.CrossRefGoogle Scholar
  27. [32]
    P. Roland, G. Svensson, T. Lindeberg, T. Risch, P. Baumann, A. Dehmel, J. Frederiksson, H. Halldorson, L. Forsberg, J. Young, and K. Zilles. A database generator for human brain imaging. Trends in Neuroscience, 24(10):562–564, 2001.CrossRefGoogle Scholar
  28. [33]
    J. R. Skoyles. FTP internet data archiving: A cousin for psycoloquy. Psycoloquy: 3(29) Data Archive (1), 1992.Google Scholar
  29. [34]
    M. Sweet and D. Thomas. Archives described at collection level. D-Lib Magazine, 6(9), September 2000.Google Scholar
  30. [35]
    J. D. Van Horn, G. J. S., P. Kostelec, J. B. Woodward, J. A. Aslam, D. Rus, D. Rockmore, and M. S. Gazzaniga. The Functional Magnetic Resonance Imaging Data Center (fMRIDC): The challenges and rewards of large-scale databasing of neuroimaging studies. Philosophical Transactions of the Royal Society of London: Biological Sciences, 356(1412):1323–1339, 2001.CrossRefGoogle Scholar
  31. [36]
    D. A. Wagner. Early detection of Alzheimer s disease: An fMRI marker for people at risk? Nature Neuroscience, 3(10):973–974, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Fillia Makedon
    • 1
  • James Ford
    • 1
  • Li Shen
    • 1
  • Tilmann Steinberg
    • 1
  • Andrew Saykin
    • 2
  • Heather Wishart
    • 2
  • Sarantos Kapidakis
    • 3
  1. 1.The Dartmouth Experimental Visualization Laboratory, Department of Computer ScienceDartmouth CollegeHanoverUSA
  2. 2.Brain Imaging LaboratoryDartmouth Medical SchoolLebanonUSA
  3. 3.Department of Archive and Library SciencesIonian UniversityGreece

Personalised recommendations