Free-Variable Tableaux for Constant-Domain Quantified Modal Logics with Rigid and Non-rigid Designation

  • Serenella Cerrito
  • Marta Cialdea Mayer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2083)


This paper presents a sound and complete free-variable tableau calculus for constant-domain quantified modal logics, with a propositional analytical basis, i.e. one of the systems K, D, T, K4, S4. The calculus is obtained by addition of the classical free-variable γ-rule and the “liberalized” δ+-rule [14] to a standard set of propositional rules. Thus, the proposed system characterizes proof-theoretically the constant-domain semantics, which cannot be captured by “standard” (non-prefixed, non-annotated) ground tableau calculi. The calculi are extended so as to deal also with non-rigid designation, by means of a simple numerical annotation on functional symbols, conveying some semantical information about the worlds where they are meant to be interpreted.


Modal Logic Sequent Calculus Object Domain Modal Formula Substitution Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abadi and Z. Manna. Modal theorem proving. In Proc. of the 8th Int. Conf. on Automated Deduction, number 230 in LNCS, pages 172–189, Berlin, 1986. Springer.CrossRefGoogle Scholar
  2. 2.
    Y. Auffray and P. Enjalbert. Modal theorem proving: an equational viewpoint. Journal of Logic and Computation, 2:247–297, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. Basin, M. Matthews, and L. Viganò. Labelled modal logics: Quantifiers. Journal of Logic Language and Information, 7(3):237–263, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    N. Belnap. Display logic. J. of Philosophical Logic, 11:375–417, 1982.MathSciNetGoogle Scholar
  5. 5.
    S. Cerrito. Herbrand methods for sequent calculi; unification in LL. In K. Apt, editor, Proc. of the Joint International Conference and Symposium on Logic Programming, pages 607–622, 1992.Google Scholar
  6. 6.
    M. Cialdea. Resolution for some first order modal systems. Theoretical Computer Science, 85:213–229, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Cialdea Mayer and S. Cerrito. Variants of first-order modal logics. In R. Dyckhoff, editor, Proc. of Tableaux 2000, LNCS. Springer Verlag, 2000.Google Scholar
  8. 8.
    K. Fine. Failures of the interpolation lemma in quantified modal logic. Journal of Symbolic Logic, 44(2), 1979.Google Scholar
  9. 9.
    M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel Publishing Company, 1983.Google Scholar
  10. 10.
    M. Fitting. First-order modal tableaux. Journal of Automated Reasoning, 4:191–213, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Fitting. On quantified modal logic. Fundamenta Informaticae, 39:105–121, 1999.MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume II, pages 249–307. D. Reidel Publ. Co., 1984.Google Scholar
  13. 13.
    R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino, G. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of tableau methods. Kluwer, 1999.Google Scholar
  14. 14.
    R. Hähnle and P. H. Schmitt. The liberalized δ-rule in free variable semantic tableaux. Journal of Automated Reasoning, 13:211–222, 1994.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P. Jackson and H. Reichgelt. A general proof method for first-order modal logic. In Proc. of the 10th Joint Conf. on Artificial Intelligence (IJCAI’ 87), pages 942–944. Morgan Kaufmann, 1987.Google Scholar
  16. 16.
    K. Konolige. Resolution and quantified epistemic logics. In J. H. Siekmann, editor, Proc. of the 8th Int. Conf. on Automated Deduction (CADE 86), number 230 in LNCS, pages 199–208. Springer, 1986.CrossRefGoogle Scholar
  17. 17.
    S. A. Kripke. Semantical analysis of modal logic I: Normal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    P. D. Lincoln and N. Shankar. Proof search in fit order linear logic and other cut-free sequent calculi. In S. Abramsky, editor, Proc. of the Ninth Annual IEEE Symposium on Logic In Computer Science (LICS), pages 282-91. IEE Computer Society Press, 1994.Google Scholar
  19. 19.
    H. J. Ohlbach. Semantics based translation methods for modal logics. Journal of Logic and Computation, 1(5):691-46, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    N. Shankar. Proof search in the intuitionist sequent calculus. In D. Kapur, editor, Proc. of the Eleventh International Conference on Automated Deduction (CADE), number 607 in LNCS, pages 522-36. Springer Verlag, 1992.Google Scholar
  21. 21.
    L. A. Wallen. Automated Deduction in Nonclassical Logics: Efficient Matrix Proof Methods for Modal and Intuitionistic Logics. MIT Press, 1990.Google Scholar
  22. 22.
    H. Wansing. Predicate logics on display. Studia Logica, 62(1):49–75, 1962.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Serenella Cerrito
    • 1
  • Marta Cialdea Mayer
    • 2
  1. 1.L.R.I.Université de Paris-SudFrance
  2. 2.Dipartimento di Informatica e AutomazioneUniversità di Roma TreItaly

Personalised recommendations