Model-Checking Based on Fluid Petri Nets for the Temperature Control System of the ICARO Co-generative Plant

  • Marco Gribaudo
  • A. Horváth
  • A. Bobbio
  • Enrico Tronci
  • Ester Ciancamerla
  • Michele Minichino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2434)


The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain for conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPN). It is shown that the same FPN model can be fed to a functional analyser for model checking as well as to a stochastic analyser for performance evaluation. We illustrate our approach and show its usefulness by applying it to a “real world” hybrid system: the temperature control system of a co-generative plant.


Model Check Hybrid System Temperature Control System Hybrid Automaton Primary Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Alla and R. David. Continuous and hybrid Petri nets. Journal of Systems Circuits and Computers, 8(1):159–188, Feb 1998.CrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Allam. Sur l’analyse quantitative des réseaux de Petri hybrides: une approche baseée sur lea automates hybrides. Technical report, Phd Thesis, Institut National Polytechnique de Grenoble (in French), 1998.Google Scholar
  3. [3]
    R. Alur, T.A. Henzinger, and P.H. Ho. Automatic symbolic verification of embedded systems. IEEE Transaction Software Engineering, 22:181–201, 1996.CrossRefGoogle Scholar
  4. [4]
    A. Bobbio, S. Bologna, E. Ciancamerla, P. Incalcaterra, C. Kropp, M. Minichino, and E. Tronci. Advanced techniques for safety analysis applied to the gas turbine control system of ICARO co-generative plant. In X Convegno Tecnologie e Sistemi Energetici Complessi, pages 339–350, 2001.Google Scholar
  5. [5]
    A. Bobbio and A. Horváth. Petri nets with discrete phase timing: A bridge between stochastic and functional analysis. In Second International Workshop on Models for Time-Critical Systems (MTCS 2001), pages 22–38, 2001.Google Scholar
  6. [6]
    E.M. Clarke, E. A. Emerson, and A.P. Sistla. Automatic verification of finite state concurrent systems using temporal logic specifications: A practical approach. ACM Transactions on Programming Languages and Systems, 8(2):244–263, 1986.zbMATHCrossRefGoogle Scholar
  7. [7]
    E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative Temporal Reasoning. Journal of Real Time Systems, 4:331–352, 1992.CrossRefGoogle Scholar
  8. [8]
    M. Gribaudo. Hybrid formalism for performance evaluation: Theory and applications. Technical report, Phd Thesis, Dipartimento di Informatica, Università di Torino, 2001.Google Scholar
  9. [9]
    M. Gribaudo, M. Sereno, A. Horváth, and A. Bobbio. Fluid stochastic Petri nets augmented with flush-out arcs: Modelling and analysis. Discrete Event Dynamic Systems, 11(1/2):97–117, January 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    T. A. Henzinger, P. H. Ho, and H. Wong-Toi. A user guide to HyTech. In Proceedings 1st Workshop Tools and Algorithms for the Construction and Analysis of Systems — TACAS, pages 41–71. Springer Verlag, LNCS Vol 1019-, 1995.Google Scholar
  11. [11]
    G. Horton, V. Kulkarni, D. Nicol, and K. Trivedi. Fluid stochastic Petri nets: Theory, application and solution techniques. European Journal of Operational Research, 105(1):184–201, 1998.zbMATHCrossRefGoogle Scholar
  12. [12]
    A. Horváth, M. Gribaudo, and A. Bobbio. From FPN to NuSMV: The temperature control system of the ICARO cogenerative plant. Technical report, Università del Piemonte Orientale, Feb 2002,
  13. [13]
    T. Murata. Petri nets: properties, analysis and applications. Proceedings of the IEEE, 77:541–580, 1989.CrossRefGoogle Scholar
  14. [15]
    B. Tuffin, D. S. Chen, and K. Trivedi. Comparison of hybrid systems and fluid stochastic Petri nets. Discrete Event Dynamic Systems, 11(1/2):77–95, January 2001.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marco Gribaudo
    • 1
  • A. Horváth
    • 2
  • A. Bobbio
    • 3
  • Enrico Tronci
    • 4
  • Ester Ciancamerla
    • 5
  • Michele Minichino
    • 5
  1. 1.Dip. di InformaticaUniversità di TorinoTorinoItaly
  2. 2.Dept. of TelecommunicationsUniv. of Technology and EconomicsBudapestHungary
  3. 3.Dip. di InformaticaUniversità del Piemonte OrientaleAlessandriaItaly
  4. 4.Dip. di InformaticaUniversità di Roma ”La Sapienza”RomaItaly
  5. 5.ENEACR CasacciaRomaItaly

Personalised recommendations