New Inorganic Polymers Containing Phosphorus

  • Andrew R. McWilliams
  • Hendrik Dorn
  • Ian Manners
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 220)

Abstract

The relatively unexplored area of main group polymer chemistry continues to offer fertile ground for scientific study. In this chapter recent developments in the area of linear inorganic polymers based on phosphorus are reviewed. The 1990s saw the development of a number hybrid polymer systems where elements such as carbon and sulfur were incorporated into polymer backbones along with phosphorus and nitrogen. Many of these novel materials were synthesized via the ring-opening polymerization of cyclic heterophosphazenes. Polythionylphosphazenes, hybrids of “classical” polyphosphazenes and polyoxothiazenes, are discussed in particular detail. In addition, polyphosphinoboranes, with a main chain comprising alternating phosphorus and boron atoms, have been recently prepared via the transition metal catalyzed dehydrocoupling of phosphine-borane adducts. These novel materials are also described.

Keywords

Phosphorus Polymers Heterophosphazenes Thionylphosphazenes Phosphinoboranes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Manners I (1996) Angew Chem Int Ed Engl 35:1602CrossRefGoogle Scholar
  2. 2.
    Allcock HR (1972) Chem Rev 72:315CrossRefGoogle Scholar
  3. 3.
    Allen CW (1994) Coord Chem Rev 130:137CrossRefGoogle Scholar
  4. 4.
    Stokes NH (1895) Am Chem J 17:275; Stokes NH (1896) Am Chem J 18:629; Stokes NH (1897) Am Chem J 19:782; Stokes NH (1898) Am Chem J 20:740; see Mark JE, Allcock HR, West R (1992) Inorganic polymers. Prentice Hall, Englewood Cliffs, New JerseyCrossRefGoogle Scholar
  5. 5.
    Allcock HR, Kugel RL (1965) J Am Chem Soc 87:4216CrossRefGoogle Scholar
  6. 6.
    de Jaeger R, Gleria M (1998) Prog Polym Sci 23:179CrossRefGoogle Scholar
  7. 7.
    Allcock HR (1994) Chem Mater 6:1476CrossRefGoogle Scholar
  8. 8.
    Allcock HR (1994) Adv Mater 6:106CrossRefGoogle Scholar
  9. 9.
    Allcock HR, Crane CA, Morrissey CT, Nelson JM, Reeves SD, Honeyman CH, Manners I (1996) Macromolecules 29:7740CrossRefGoogle Scholar
  10. 10.
    Honeyman CH, Manners I, Morrissey C, Allcock HR (1995) J Am Chem Soc 117:7035CrossRefGoogle Scholar
  11. 11.
    Manners I, Allcock HR, Renner G, Nuyken O (1989) J Am Chem Soc 111:5478CrossRefGoogle Scholar
  12. 12.
    Allcock HR, Coley SM, Manners I, Nuyken O, Renner G (1991) Macromolecules 24:2024CrossRefGoogle Scholar
  13. 13.
    Allcock HR, Coley SM, Manners I, Visscher KB, Parvez M, Nuyken O, Renner G (1993) Inorg Chem 32:5088CrossRefGoogle Scholar
  14. 14.
    Allcock HR, Coley SM, Morrissey CT (1994) Macromolecules 27:2904CrossRefGoogle Scholar
  15. 15.
    Roesky HW, Lücke M (1989) Angew Chem Int Ed Engl 28:493CrossRefGoogle Scholar
  16. 16.
    Honeyman CH, Foucher DA, Dahmen FY, Rulkens R, Lough AJ (1995) Organometallics 14:5503CrossRefGoogle Scholar
  17. 17.
    Peckham TJ, Massey JA, Honeyman CH, Manners I (1999) Macromolecules 32:2830CrossRefGoogle Scholar
  18. 18.
    Withers HP, Seyferth D (1982) Organometallics 1:1275CrossRefGoogle Scholar
  19. 19.
    Cao L, Manners I, Winnik MA (2001) Macromolecules 34:3353CrossRefGoogle Scholar
  20. 20.
    Manners I (1994) Coord Chem Rev 137:109CrossRefGoogle Scholar
  21. 21.
    Poly(sulfur nitride), [SN]x, possesses remarkable properties such as electrical conductivity at room temperature and superconductivity below 0.3 K; see Labes MM, Love P, Nichols LF, (1979) Chem Rev 1; [SN]x is insoluble and has a polymeric structure in the solid state with interchain S...S interactions. As these interactions are crucial to the properties of the material, [SN]x is best regarded as a solid-state polymer rather than a polymeric material with discrete macromolecular chains of the type discussed in this sectionGoogle Scholar
  22. 22.
    Dodge JA, Manners I, Allcock HR, Renner G, Nuyken O (1990) J Am Chem Soc 112:1268CrossRefGoogle Scholar
  23. 23.
    Liang M, Manners I (1991) J Am Chem Soc 113:4044CrossRefGoogle Scholar
  24. 24.
    Baalmann HH, Velvis HP, van de Grampel JC (1972) R ecl Trav Chim 91:935Google Scholar
  25. 25.
    Klingebiel U, Glemser O (1972) Z Naturforsch 27b:467Google Scholar
  26. 26.
    Suzuki D, Akagi H, Matsumura K (1983) Synth Commun 369Google Scholar
  27. 27.
    van de Grampel JC (1981) Rev Inorg Chem 3:1Google Scholar
  28. 28.
    van de Grampel JC (1992) Coord Chem Rev 112:247CrossRefGoogle Scholar
  29. 29.
    Baalmann HH, van de Grampel JC (1973) Recl Trav Chim 92:1237Google Scholar
  30. 30.
    Gates DP (1997) The synthesis, structure, reactivity and polymerization behavior of boron-and sulfur-nitrogen-phosphorus heterocycles and highly strained chalcogen-and boron-bridged [1]. ferrocenophanes. PhD thesis, University of TorontoGoogle Scholar
  31. 31.
    McWilliams AR, Gates DP, Edwards M, Liable-Sands LM, Guzei I, Rheingold AL, Manners I (2000) J Am Chem Soc 122:8848CrossRefGoogle Scholar
  32. 32.
    Liang M, Manners I (1991) Makromol Chem, Rapid Commun 12:613CrossRefGoogle Scholar
  33. 33.
    Roy AK, Burns GT, Lie GC, Grigoras S (1993) J Am Chem Soc 115:2604CrossRefGoogle Scholar
  34. 34.
    de Jaeger R, Lagowski JB, Manners I, Vansco GJ (1995) Macromolecules 28:539CrossRefGoogle Scholar
  35. 35.
    Ni Y, Lough AJ, Rheingold AL, Manners I (1995) Angew Chem Int Ed Engl 34:998CrossRefGoogle Scholar
  36. 36.
    To our knowledge, only two other examples of 24-membered inorganic heterocycles have been structurally characterized: (a) the 24-membered phosphazene [N=PPh2]12, see: Oakley RT, Rettig SJ, Paddock NL, Trotter J (1985) J Am Chem Soc 107: 6923; (b) a 24-membered imidoantimony(III) metallacycle has also been reported, see: Beswick MA, Davies MK, Paver MA, Raithby PR, Steiner A, Wright DS (1996) Angew Chem Int Ed Engl 35:1508CrossRefGoogle Scholar
  37. 37.
    Ni Y, Stammer A, Liang M, Massey J, Vancso GJ, Manners I (1992) Macromolecules 25:7119CrossRefGoogle Scholar
  38. 38.
    Allcock HR, Dodge JA, Manners I (1993) Macromolecules 26:11CrossRefGoogle Scholar
  39. 39.
    Allcock HR, Cook WJ, Mack DP (1972) Inorg Chem 11:2584CrossRefGoogle Scholar
  40. 40.
    Gates DP, Park P, Liang M, Edwards M, Angelakos C, Liable-Sands LM, Rheingold AL, Manners I (1996) Inorg Chem 35:4301CrossRefGoogle Scholar
  41. 41.
    Gates DP, McWilliams AR, Manners I (1998) Macromolecules 31:3494CrossRefGoogle Scholar
  42. 42.
    Nobis MN, McWilliams AR, Nuyken O, Manners I (2000) Macromolecules 33:7707CrossRefGoogle Scholar
  43. 43.
    Pang Z, Gu X, Yekta A, Masoumi Z, Coll JB, Winnik MA, Manners I (1996) Adv Mater 8:768CrossRefGoogle Scholar
  44. 44.
    See: Weyenberg DR, Nelson LE (1965) J Org Chem 30:2618; Cundy CS, Eaborn C, Lappert MF (1972) J Organomet Chem 44:291CrossRefGoogle Scholar
  45. 45.
    Masoumi Z, Stoeva V, Yekta A, Pang Z, Manners I, Winnik MA (1996) Chem Phys Lett 261:551CrossRefGoogle Scholar
  46. 46.
    Ruffolo R, Evans CEB, Liu X, Pang Z, Park P, McWilliams AR, Gu X, Yekta A, Winnik MA, Manners I (2000) Anal Chem 72:1894CrossRefGoogle Scholar
  47. 47.
    The polymerization of a-methylstyrene is only possible above concentrations of 2.2 mol/l at 25°C; see Odian G (1991) Principles of polymerization, 3rd edn. Wiley-Interscience, New York, Chap 3Google Scholar
  48. 48.
    (a) The observation of a critical concentration below which polymerization is not observed is explained by a counterbalance of the DHROP and TDSROP contributions to DGROP. DSROP is generally negative. (b) For an example of a system that is a ring in solution and a polymer in the solid state see: Beckmann J, Jurkschat K, Schollmeyer D, Schürmann M (1997) J Organomet Chem 543:229Google Scholar
  49. 49.
    Chunechom V, Vidal TE, Adams H, Turner ML (1998) Angew Chem Int Ed 37:1928CrossRefGoogle Scholar
  50. 50.
    Chivers T, Doxsee DD, Edwards M, Hilts RW (1992) In: Steudel R (ed) The chemistry of inorganic ring systems (Studies in Chemistry, vol 14). Elsevier, p 291Google Scholar
  51. 51.
    Burg AB, Wagner RI (1953) J Am Chem Soc 75:3872CrossRefGoogle Scholar
  52. 52.
    Parshall GW (1967) In: Muetterties EL (ed) The chemistry of boron and its componds. Wiley, New York, p 617Google Scholar
  53. 53.
    Haiduc I, Sowerby DB (1987) The chemistry of inorganic homo — and heterocycles. Academic Press, Toronto, p 103Google Scholar
  54. 54.
    Wagner RI, Caseiro FF (1959) J Inorg Nucl Chem 11:259CrossRefGoogle Scholar
  55. 55.
    Burg AB (1959) J Inorg Nucl Chem 11:258CrossRefGoogle Scholar
  56. 56.
    Burg AB, Wagner RI (1963) US Patent 3,071,553Google Scholar
  57. 57.
    Coates GE, Livingstone JG (1961) J Chem Soc 5053Google Scholar
  58. 58.
    Dorn H, Singh RA, Massey JA, Lough AJ, Manners I (1999) Angew Chem Int Ed 38:3321CrossRefGoogle Scholar
  59. 59.
    Dorn H, Singh RA, Massey JA, Nelson JM, Jaska CA, Lough AJ, Manners I (2000) J Am Chem Soc 122:6669CrossRefGoogle Scholar
  60. 60.
    Gee W, Holden JB, Shaw RA, Smith BC (1965) J Chem Soc 3171Google Scholar
  61. 61.
    Korshak VV, Zamyatina VA, Solomatina AI (1964) Izv Akad Nauk SSSR Ser Khim 8:1541Google Scholar
  62. 62.
    Dorn H, Jaska CA, Singh RA, Lough AJ, Manners I (2000) Chem Commun 1041Google Scholar
  63. 63.
    Jaska CA, Temple K, Lough AJ, Manners I (2001) Chem C ommun 962Google Scholar
  64. 64.
    Maraval V, Laurent R, Donnadieu B, Mauzac M, Caminade AM, Majoral JP (2000) J Am Chem Soc 122:2499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Andrew R. McWilliams
    • 1
  • Hendrik Dorn
    • 1
  • Ian Manners
    • 1
  1. 1.Department o f ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations