Advertisement

Detecting Sisease-Specific Patterns of Brain Structure Using Cortical Pattern Matching and a Population-Based Probabilistic Brain Atlas

  • Paul M. Thompson
  • Michael S. Mega
  • Christine Vidal
  • Judith L. Rapoport
  • Arthur W. Toga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2082)

Abstract

The rapid creation of comprehensive brain image databases mandates the development of mathematical algorithms to uncover diseasespecific patterns of brain structure and function in human populations. We describe our construction of probabilistic atlases that store detailed information on how the brain varies across age and gender, across time, in health and disease, and in large human populations. Specifically, we introduce a mathematical framework based on covariant partial differential equations (PDEs), pull-backs of mappings under harmonic flows, and high-dimensional random tensor fields to encode variations in cortical patterning, asymmetry and tissue distribution in a population-based brain image database (N=94 scans). We use this information to detect disease-specific abnormalities in Alzheimer’s disease and schizophrenia, including dynamic changes over time. Illustrative examples are chosen to show how group patterns of cortical organization, asymmetry, and disease-specific trends can be resolved that are not apparent in individual brain images. Finally, we create four-dimensional (4D) maps that store probabilistic information on the dynamics of brain change in development and disease. Digital atlases that generate these maps show considerable promise in identifying general patterns of structural and functional variation in diseased populations, and revealing how these features depend on demographic, genetic, clinical and therapeutic parameters.

Keywords

Gray Matter Cortical Surface Brain Asymmetry Gray Matter Loss Average Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fox PT (1997). The Growth of Human Brain Mapping, Hum. Br. Mapp. 5(1):1–2.Google Scholar
  2. 2.
    Toga AW (1998). Brain Warping, Academic Press.Google Scholar
  3. 3.
    Mazziotta JC, Toga AW, Evans AC, Fox P, Lancaster J (1995). A Probabilistic Atlas of the Human Brain: Theory and Rationale for its Development, NeuroImage 2: 89–101.Google Scholar
  4. 4.
    Grenander U, Miller MI (1998). Computational Anatomy: An Emerging Discipline, Technical Report, Dept. of Mathematics, Brown University.Google Scholar
  5. 5.
    Thompson PM, Mega MS, Toga AW (2000). Disease-Specific Brain Atlases, in Mazziotta JC et al., [eds.], Brain Mapping: The Disorders, Academic Press.Google Scholar
  6. 6.
    Bajcsy R, Kovacic S (1989). Multiresolution Elastic Matching, Computer Vision, Graphics and Image Processing, 46:1–21.Google Scholar
  7. 7.
    Christensen GE, Rabbitt RD, Miller MI (1996). Deformable Templates using Large Deformation Kinematics, IEEE Trans. on Image Processing 5(10):1435–1447.CrossRefGoogle Scholar
  8. 8.
    Gee JC, LeBriquer L, Barillot C, Haynor DR, Bajcsy R (1995). Bayesian Approach to the Brain Image Matching Problem, Inst. for Res. in Cogn. Sci. Tech. Report 95-08.Google Scholar
  9. 9.
    Collins DL, Le Goualher G, Venugopal R, Caramanos A, Evans AC, Barillot C (1996). Cortical Constraints for Non-Linear Cortical Registration, In: Höhne KH, Kikinis R, [eds.], VBC'96, Hamburg, SPIE vol. 1131:307–316.Google Scholar
  10. 10.
    Ashburner J, Hutton C, Frackowiak R, Johnsrude I, Price C, Friston K (1998). Identifying global anatomical differences: deformation-based morphometry. Hum. Brain Mapping 1998; 6(5-6):348-57.Google Scholar
  11. 11.
    Toga AW, Thompson PM (1998). Multimodal Brain Atlases, Chapter in: Medical Image Databases, Wong STC [ed.], Kluwer Academic, 53–88.Google Scholar
  12. 12.
    Kikinis R, Shenton ME, Iosifescu DV, McCarley RW, Saiviroonporn P, Hokama HH, Robatino A, Metcalf D, Wible CG, Portas CM, Donnino R, Jolesz F (1996). A Digital Brain Atlas for Surgical Planning, Model-Driven Segmentation, and Teaching, IEEE Trans. on Visualization and Comp. Graphics, Sept. 1996, 2(3):232–241.Google Scholar
  13. 13.
    Mega MS, Chen S, Thompson PM, Woods RP, Karaca TJ, Tiwari A, Vinters H, Small GW, Toga AW (1997) Mapping Pathology to Metabolism: Coregistration of Stained Whole Brain Sections to PET in Alzheimer's Disease, NeuroImage 5:147–153.Google Scholar
  14. 14.
    Thompson PM, MacDonald D, Mega MS, Holmes CJ, Evans AC, Toga AW (1997). Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces, J. Comp. Assist. Tomogr. 21(4):567–581, Jul.-Aug. 1997.Google Scholar
  15. 15.
    Fox PT, Mikiten S, Davis G, Lancaster JL (1994). BrainMap: A Database of Human Functional Brain Mapping, in: Functional Neuroimaging: Technical Foundations, Thatcher RW, Hallett M, Zeffiro T, John ER, Huerta M [eds.], 95–106.Google Scholar
  16. 16.
    Sled JG, Zijdenbos AP, Evans AC (1998). A non-parametric method for automatic correction of intensity non-uniformity in MRI data, IEEE Transactions on Medical Imaging, vol. 17, no. 2, Feb. 1998.Google Scholar
  17. 17.
    Dinov ID, Mega MS, Thompson PM, Lee L, Woods RP, Holmes CJ, Sumners DW, Toga AW (2000) Analyzing Functional Brain Images in a Probabilistic Atlas: A Validation of Sub-Volume Thresholding, J. Comp. Assist. Tomography [in press].Google Scholar
  18. 18.
    Zijdenbos A, Evans A, Riahi F, Sled J, Chui H-C, Kollokian V (1996). Automatic quantification of multiple sclerosis lesion volume using stereotactic space, Proc. 4th Vis. Biomed. Comp. (VBC), Hamburg, Germany.Google Scholar
  19. 19.
    Jacobsen LK, Rapoport JL (1998). Research update: childhood-onset schizophrenia: implications of clinical and neurobiological research. J. Child Psychol. Psychiatry. 1998 Jan;39(1):101-13.CrossRefGoogle Scholar
  20. 20.
    Talairach J, Tournoux P (1988). Co-planar Stereotaxic Atlas of the Human Brain, New York: Thieme.Google Scholar
  21. 21.
    MacDonald D (1998). A Method for Identifying Geometrically Simple Surfaces from Three Dimensional Images, PhD Thesis, McGill Univ., Canada.Google Scholar
  22. 22.
    Ono M, Kubik S, Abernathey CD (1990) Atlas of the Cerebral Sulci. Stuttgart: Thieme.Google Scholar
  23. 23.
    Davatzikos C (1996). Spatial Normalization of 3D Brain Images using Deformable Models, J. Comp. Assist. Tomogr. 20(4):656–665, Jul.-Aug. 1996.Google Scholar
  24. 24.
    Fischl B, Sereno MI, Tootell RBH, Dale AM (1999). High-Resolution Inter-Subject Averaging and a Coordinate System for the Cortical Surface, Hum Brain Mapp. 8(4):272-84.Google Scholar
  25. 25.
    Thompson PM, Toga AW (1996). A Surface-Based Technique for Warping 3-Dimensional Images of the Brain, IEEE Transactions on Medical Imaging, 15(4): 1–16.Google Scholar
  26. 26.
    Xu C, Pham DL, Rettmann ME, Yu DN, Prince JL (1999). Reconstruction of the human cerebral cortex from magnetic resonance images, IEEE Trans Med Imaging. 1999 Jun;18(6):467-80.CrossRefGoogle Scholar
  27. 27.
    Thompson PM, Toga AW (2000). Elastic Image Registration and Pathology Detection, Bankman I et al. [eds.], Handbook of Medical Image Processing, Academic Press.Google Scholar
  28. 28.
    Burke WL (1985). Applied Differential Geometry, Cambridge University Press.Google Scholar
  29. 29.
    Joshi SC, Miller MI, Christensen GE, Banerjee A, Coogan TA, Grenander U(1995). Hierarchical Brain Mapping via a Generalized Dirichlet Solution for Mapping Brain Manifolds, SPIE 2573:278–289.MathSciNetGoogle Scholar
  30. 30.
    Liseikin VD (1991). On a Variational Method for Generating Adaptive Grids on N-Dimensional Surfaces, Doklady Akademii Nauk. CCCP, 1991, V319 N3:546–549.Google Scholar
  31. 31.
    Alouges F (1997). A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case, SIAM J. Num. Analysis 34(5):1708–1726.Google Scholar
  32. 32.
    Polyakov AM (1987). Gauge Fields and Strings. Harwood, New York.Google Scholar
  33. 33.
    Bakircioglu M, Joshi S, Miller MI (1999). Landmark Matching on Brain Surfaces via Large Deformation Diffeomorphisms on the Sphere, Proc. SPIE Medical Imaging.Google Scholar
  34. 34.
    Thompson PM, Moussai J, Khan AA, Zohoori S, Goldkorn A, Mega MS, Small GW, Cummings JL, Toga AW (1998). Cortical Variability and Asymmetry in Normal Aging and Alzheimer's Disease, Cerebral Cortex 8(6):492–509, Sept. 1998.Google Scholar
  35. 35.
    Woods RP, Dapretto M, Sicotte NL, Toga AW, Mazziotta JC (1999). Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data. Hum Brain Mapp. 8(2-3): 73-9.CrossRefGoogle Scholar
  36. 36.
    Thirion J-P, Prima S, Subsol S (2000). Statistical Analysis of Dissymmetry in Volumetric Medical Images, Medical Image Analysis 4(2):111–121.Google Scholar
  37. 37.
    Cao J, Worsley KJ (2001). The Geometry of the Hotelling's T-squared Random Field with Applications to the Detection of Shape Changes, Annals of Statistics [in press].Google Scholar
  38. 38.
    Worsley KJ, Andermann M, Koulis T, MacDonald D, Evans AC (1999). Detecting changes in nonisotropic images. Hum Brain Mapp. 8(2-3):98–101.CrossRefGoogle Scholar
  39. 39.
    Thompson PM, Mega MS, Narr KL, Sowell ER, Blanton RE, Toga AW (2000). Brain Image Analysis and Atlas Construction, Chapter, in: Fitzpatrick M [ed.], SPIE Handbook on Medical Image Analysis, SPIE Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Paul M. Thompson
    • 1
  • Michael S. Mega
    • 1
  • Christine Vidal
    • 1
  • Judith L. Rapoport
    • 2
  • Arthur W. Toga
    • 1
  1. 1.Laboratory of Neuro Imaging, Division of Brain Mapping, and Alzheimer's Disease Center, Dept. of NeurologyUCLA School of MedicineLos AngelesUSA
  2. 2.Child Psychiatry BranchNational Institute of Mental HealthBethesdaUSA

Personalised recommendations