Steps Toward a Stereo-Camera-Guided Biomechanical Model for Brain Shift Compensation

  • Oskar Škrinjar
  • Colin Studholme
  • Arya Nabavi
  • James Duncan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2082)


Surgical navigation systems provide the surgeon with a display of preoperative and intraoperative data in the same coordinate system. However, the systems currently in use in neurosurgery are subject to inaccuracy caused by intraoperative brain movement (brain shift) since they typically assume that the intracranial structures are rigid. Experiments show brain shift of up to one centimeter, making it the dominant error in the system. We propose a system that compensates for this error. It is based on a continuum 3D biomechanical deformable brain model guided by intraoperative data. The model takes into account neuro-anatomical constraints and is able to correspondingly deform all preoperatively acquired data. The system was tested on two sets of intraoperative MR scans, and an initial validation indicated that our approach reduced the error caused by brain shift.


Biomechanical Model Deformable Model Brain Surface Stereo Camera Displacement Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hill, D., Maurer, C., Wang, M., et al: Estimation of Intraoperative Brain Surface Movement. CVRMed-MRCAS’97, March 1997, 449–458Google Scholar
  2. 2.
    Bucholz, R., Yeh, D., Trobaugh, J., et al: The Correction of Stereotactic Inaccuracy Caused by Brain Shift Using an Intraoperative Ultrasound Device. CVRMed-MRCAS’97, March 1997, 459–466Google Scholar
  3. 3.
    Dorward, N. L., Alberti, O., Velani. B., et al: Early Clinical Experience with the EasyGuide Neuronavigation System and Measurement of Intraoperative Brain Distortion. In Hellwing D, Bauer BL (eds): Minimally Invasive Techniques for Neurosurgery, 1997, 193–196.Google Scholar
  4. 4.
    Reinges, M. H. T., Krombach, G., Nguyen, H., et al: Assessment of Intraoperative Brain Tissue Movements by Frameless Neuronavigation. Computer Aided Surgery 2:218, 1997 (abstract)Google Scholar
  5. 5.
    Edwards, P. J., Hill D. L. G., Little, J. A., Hawkes, D. J.: Deformation for Image Guided Interventions Using a Three Component Tissue Model. IPMI’97, Proceedings, June 1997, 218–231Google Scholar
  6. 6.
    Roberts, D. W., Hartov, A., Kennedy F. E., et al: Intraoperative Brain Shift and Deformation: A Quantative Analysis o Cortical Displacement in 28 Cases. Neurosurgery, Vol. 43, 749–760, 1998CrossRefGoogle Scholar
  7. 7.
    Studholme, C., Hawkes, D. J., Hill, D. L. G., A Normalised Entropy Measure of 3D Medical Image Alignment, SPIE Medical Imaging, Feb 1998.Google Scholar
  8. 8.
    Maurer, C. R., Hill D. L. G., Maciunas, R. J., et al: Measurement of Intraoperative Brain Surface Deformation Under a Craniotomy. MICCAI’98, Proceedings, October 1998, 51–62Google Scholar
  9. 9.
    Škrinjar, O., Duncan, J.: Real Time 3D Brain Shift Compensation. IPMI’99, Proceedings, June/July 1999, 42–55Google Scholar
  10. 10.
    Hata, N., Nabavi, A., Warfield S., et al: A Volumetric Optical Flow Method for Measurement of Brain Deformation from Intraoperative Magnetic Resonance Images. MICCAI’99 Proceedings, September 1999, 928–935Google Scholar
  11. 11.
    Hill, D. L. G., Maurer, Jr. C. R., Martin, A. J., et al: Assessment of Intraoperative Brain Deformation Using Interventional MR Imaging. MICCAI’99 Proceedings, September 1999, 910–919Google Scholar
  12. 12.
    Audette, M. A., Siddiqi, K., Peters, T. M.: Level-Set surface Segmentation and Fast Cortical Range Image Tracking for Computing Intrasurgical Deformations. MICCAI’99 Proceedings, September 1999, 788–797Google Scholar
  13. 13.
    Škrinjar, O., Tagare, H. Duncan, S.: Surface Growing from Stereo Images. CVPR 2000 Proceedings, June 2000Google Scholar
  14. 14.
    Ferrant, M., Warfield, S. K., Nabavi, A., et al: Registration of 3D Intraoperative MR Images of the Brain Using a Finite Element Biomechanical Model. MICCAI’2000 Proceedings, October 2000, 19–28Google Scholar
  15. 15.
    Miga, I. M., Staubert, A. Paulsen, D. K., et al: Model-Updated Image Guided Neurosurgery: Preliminary Analysis Using Intraoperative MR. MICCAI’2000 Proceedings, October 2000, 115–124Google Scholar
  16. 16.
    Valliappan, A., Continuum Mechanics Fundamentals, A.A. Balkema, Rotterdam, 1981Google Scholar
  17. 17.
    Nabavi, A., Black, P. McL., Gering, D. T., et al” Serial Intraoperative MR Imaging of Brain shift. Neurosurgery, April 2001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Oskar Škrinjar
    • 1
  • Colin Studholme
    • 2
  • Arya Nabavi
    • 3
  • James Duncan
    • 1
    • 2
  1. 1.Department of Electrical EngineeringYale UniversityNew HavenUSA
  2. 2.Department of Diagnostic RadiologyYale UniversityNew HavenUSA
  3. 3.Surgical Planning Laboratory, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations