Advertisement

Influence of cationic surfactants on DNA conformation

  • D. M. McLoughlin
  • A. V. Gorelov
  • K. A. Dawson
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 118)

Abstract

In previous work the binding of the cationic surfactant dodecyltrimethylammonium bromide to DNA was studied. The original work has been extended to include data for the decyltrimethy-lammonium ion. Additionally, while previously considerations of the complex structure were done within the framework of the dynamics of rigid rods, in the present case we have extended this analysis to include a wide range of three-dimensional configurations. Furthermore, the secondary structure of the DNA within the complex is taken into account. Examination of secondary structural changes on surfactant binding indicates that there are no significant changes in the DNA secondary structure. Consideration of the hydrodynamic properties of the surfactant—DNA complex and extension of the experimental data to include decyltrimethylammonium along with application of hydrody-namic modelling allowed us to exclude highly bent or folded complex conformations. The magnitude of the DNA diffusion coefficient decrease on surfactant binding was measured for surfactant molecules of two different tail lengths. The data showed that a rod covered in a single surfactant layer can provide a simple explanation for the difference in the magnitude of the decrease between the two surfactants. In order to account for the observed ratio of 0.8 surfactants per DNA phosphate observed on completion of the first-stage binding, the surfactant headgroups should be located close to the DNA surface, within the condensation volume. This would leave the tail groups projecting outwards, with lateral hydrophobic association between the tails.

Key words

Dodecyltrimethylammonium Decyltrimethylammonium DNA—surfactant complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorelov AV, Kudryashov ED, Jacquier J-C, McLoughlin DM, Dawson KA (1998) Physica A 249:216CrossRefGoogle Scholar
  2. 2.
    Broesrma S (1960) J Chem Phys 32:1626CrossRefGoogle Scholar
  3. 3.
    Tirado MM, Martinez CL Garcia de la Torre J (1984) J Chem Phys. 81:2047CrossRefGoogle Scholar
  4. 4.
    Elias JG, Eden D (1981) Biopolymers 20:2369CrossRefGoogle Scholar
  5. 5.
    Goinga HT, Pecora R (1991) Macromolecules 24:6128CrossRefGoogle Scholar
  6. 6.
    Ferrari ME, Bloomfield VA (1992) Macromolecules 25:5266CrossRefGoogle Scholar
  7. 7.
    Garcia de la Torre J, Navarro S, Lopez-Martinez MC, Diaz FG, Lopez Cascales JJ (1994) Biophys J 67:530Google Scholar
  8. 8.
    Garcia de la Torre J, Navarro S, Lopez Martinez MC (1994) Biophys J 66:1573Google Scholar
  9. 9.
    Eimer W, Williamson JR, Boxer SG, Pecora R (1990) Biochemistry 29:799CrossRefGoogle Scholar
  10. 10.
    Cantor CR, Schimmel PR (1980) Biophysical chemistry part 1: conformation of biological macromolecules. Freeman, New York, p 179Google Scholar
  11. 11.
    Jacquier J-C, Gorelov AV, McLoughlin DM, Dawson KA (1998) J Chromatogr A 817:263CrossRefGoogle Scholar
  12. 12.
    Baase WA, Johnson WC (1979) Nucleic Acids Res 6:797CrossRefGoogle Scholar
  13. 13.
    Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A (1979) Nature 282:680CrossRefGoogle Scholar
  14. 14.
    Phillips JN (1955) J Chem Soc Faraday Trans 51:561CrossRefGoogle Scholar
  15. 15.
    Mel’nikov SM, Sergeyev VG, Yoshikawa K (1995) J Am Chem Soc 117:2401CrossRefGoogle Scholar
  16. 16.
    Buckin VA, Kankiya D, Sarvazyan AP, Uedaira H (1989) Nucleic Acids Res 17:4189CrossRefGoogle Scholar
  17. 17.
    Gaudin AM, Fuerstenau DW (1955) Trans AIME 202:958Google Scholar
  18. 18.
    Somasundaran P, Fuerstenau DW (1966) J Phys Chem 70:90CrossRefGoogle Scholar
  19. 19.
    Gu T, Huang Z (1989) Colloids Surf 40:71CrossRefGoogle Scholar
  20. 20.
    Hansson P, Lindman B (1996) Curr Opin Colloid Interface Sci 1:604CrossRefGoogle Scholar
  21. 21.
    Hayter JB (1985) In: Degiorgio V, Corti M (eds) Physics of amphiphiles, micelles, vesicles and microemulsions. North Holland, Amsterdam, pp 59–94Google Scholar
  22. 22.
    Manning GS (1978) Q Rev Biophys 11:179CrossRefGoogle Scholar
  23. 23.
    Young MA, Jayaram B, Beveridge DL (1997) J Am Chem Soc 119:59CrossRefGoogle Scholar
  24. 24.
    Yeskie MA, Harwell JH (1988) J Phys Chem 92:2346CrossRefGoogle Scholar
  25. 25.
    Tanford C (1980) The hydrophobic effect-formation of micelles and biological membranes. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • D. M. McLoughlin
    • 1
  • A. V. Gorelov
    • 1
    • 2
  • K. A. Dawson
    • 1
  1. 1.Irish Centre for Colloid Science and Biomaterials, Department of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
  2. 2.Institute of Theoretical and Experimental BiophysicsPushchinoRussia

Personalised recommendations