Crystal growth kinetics in deionised two-component colloidal suspensions

  • Jianing Liu
  • Andreas Stipp
  • Thomas Palberg
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 118)

Abstract

We report first measurements of the crystal growth velocity in deionised two-component aqueous suspensions of charged polystyrene latex spheres. The size ratio was 1:1.3 and mixing ratios up to 18% of the larger particle were investigated. For the pure components limiting growth velocities of (V∞,120 = 4.8 µm s−1 and V∞,156 = 2.9 µm s−1) were observed. In the mixture v drops with increasing mixing ratio even below (V∞,156) of the large minority component. Careful monitoring of the deionisation procedure excludes the explanation of enhanced ionic contamination. Alternatives based on the kinetics of particle attachment and the position of the phase boundary are discussed.

Key words

Effective mobility Bragg microscopy Crystal growth velocity Difussion coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker B, Döring W (1935) Ann Phys 24:719CrossRefGoogle Scholar
  2. 2.(a)
    Wilson HA (1900) Philos Mag 50:238Google Scholar
  3. 2.(b)
    Frenkel JZ (1933) Sowjetunion 1:498Google Scholar
  4. 3.
    Meller A, Stavans J (1992) Phys Rev Lett 68:3646CrossRefGoogle Scholar
  5. 4.
    Barlett P, vanMegen W (1994) In: Mehta A (ed) Granular matter: Springer, Berlin Heidelberg New York, pp 195–257Google Scholar
  6. 5.
    Palberg T (1999) J Phys Condens Matter 11:R323CrossRefGoogle Scholar
  7. 6.
    Maroufi MR, Stipp A, Palberg T (1998) Prog Colloid Polym Sci 108:83CrossRefGoogle Scholar
  8. 7.(a)
    Aastuen DJW, Clark NA, Kotter LK, Ackerson BJ (1986) Phys Rev Lett 57:1733CrossRefGoogle Scholar
  9. 7.(b)
    Phys Rev Lett 57:2772 (erratum)Google Scholar
  10. 8.
    Okubo T (1994) In: Schmitz KS (ed) Macro-ion characterization: from dilute solution to complex fluids, ACS symposium series 548. pp 364–392Google Scholar
  11. 9.
    He Y, Olivier B, Ackerson BJ (1997) Langmuir 13:1408CrossRefGoogle Scholar
  12. 10.
    Preis T, Biehl R, Palberg T (1998) Prog Colloid Polym Sci 108:129CrossRefGoogle Scholar
  13. 11.
    Würth M, Schwarz J, Culis F, Leiderer P, Palberg T (1998) Phys Rev E 52:6415CrossRefGoogle Scholar
  14. 12.
    Schöpe HJ, Decker T, Palberg T (1999) J Chem Phys 109:10068CrossRefGoogle Scholar
  15. 13.
    Palberg T, Härtl W, Wittig U, Versmold H, Würth M, Simnacher E (1992) J Phys Chem 96:8180CrossRefGoogle Scholar
  16. 14.
    Palberg T, Härtl W, Deggelmann M, Simnacher E, Weber R (1991) Prog Colloid Polym Sci 84:352CrossRefGoogle Scholar
  17. 15.
    Wette P, Schöpe HJ, Palberg T (2001) Prog Colloid Polym Sci PCPS 72Google Scholar
  18. 16.
    Hessinger D, Evers M, Palberg T (2000) Phys Rev E 61:5493CrossRefGoogle Scholar
  19. 17.
    Löwen H, Palberg T, Simon R (1993) Phys Rev Lett 70:1557CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • Jianing Liu
    • 1
  • Andreas Stipp
    • 1
  • Thomas Palberg
    • 1
  1. 1.Institut für Physik der Universität Mainz Staudinger Weg 7MainzGermany

Personalised recommendations