Crystal nucleation versus vitrification in charged colloidal suspensions

  • H. -J. Schöpe
  • T. Palberg
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 118)


We investigated the solidification behaviour of thoroughly deionised aqueous suspensions of polystyrene latex spheres by various optical scattering methods. We found a dramatic increase in the nucleation rate densities with increasing particle number density. Crystalline and nanocrystalline samples showed two relaxation processes on widely separated time scales. For an index-matched suspension of perfluorinated particles an amorphous state was accessible with the glass-typical signature of frozen long-time relaxation. From our results we propose a route into the amorphous state different to that observed in hard-sphere suspensions. It seems that in charged-sphere systems the increased nucleation rate density triggers the appearance of a Bernal-type glass.

Key words

Colloids Charge spheres Glasses Light scattering Shear modulus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gutzow I, Schmelzer J (1995) The vitreous state. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  2. 2.
    Götze W (1991) In: Hansen J P et al (eds) Liquids, freezing and glass transition. Elsevier, Amsterdam, p 287Google Scholar
  3. 3.
    Cummins H, Li Z, Hwang GYH, Shen GQ, Du WM, Hernendez J, Toa JN (1997) Z Phys B 103:501CrossRefGoogle Scholar
  4. 4.
    Palberg T (1999) J Phys Condens Matter 11:R323CrossRefGoogle Scholar
  5. 5.
    van Megan W (1995) Transp Theor Stat Phys 24:1017CrossRefGoogle Scholar
  6. 6.
    Bartsch E (1995) Transp Theor Stat Phys 24:1125CrossRefGoogle Scholar
  7. 7.
    van Megen W, Mortensen TC, Williams SR, Müller J (1998) Phys Rev E 58:6073CrossRefGoogle Scholar
  8. 8.
    Lai SK, Ma WJ, van Megen W, Snook IK (1997) Phys Rev E 56:766CrossRefGoogle Scholar
  9. 9.
    Bartsch E (1998) Curr Opin Colloid Interface Sci 3:577CrossRefGoogle Scholar
  10. 10.
    Löwen H, Hansen JP, Roux JN (1991) Phys Rev A 44:1169CrossRefGoogle Scholar
  11. 11.
    Kob W, Barrat JL (1997) Phys Rev Lett 78:4581CrossRefGoogle Scholar
  12. 12.
    Ackerson BJ (1983) Physica A 128:221CrossRefGoogle Scholar
  13. 13.
    Bartlett P, van Megen W (1994) In: Mehta A (ed) Granular matter Springer, Berlin Heidelberg, New York, p 195Google Scholar
  14. 14.
    Moriguchi I, Kawasaki K, Kawakatsu T (1993) JPhys II 3:1179CrossRefGoogle Scholar
  15. 15.
    Bolhuis PG, Kofke DA (1994) Phys Rev E 54:634CrossRefGoogle Scholar
  16. 16.
    Meller A, Stavans J (1992) Phys Rev Lett 68:3646CrossRefGoogle Scholar
  17. 17.
    Kesavamoorthy R, Sood AK, Tata BVR, Arora AK (1998) J Phys C 21:4737CrossRefGoogle Scholar
  18. 18.
    Bonn D, Tanaka H, Wegdam G, Kellay H, Meunier J (1998) Europhys Lett. 45:52CrossRefGoogle Scholar
  19. 19.
    Sirota EB, Ou-Yang HD, Sinha SK, Chaikin PM, Axe J, Fujii DY (1989) Phys Rev Lett 62:1524CrossRefGoogle Scholar
  20. 20.
    Härtl W, Versmold H, Zhang-Heider X (1995) J Chem Phys 102:6613CrossRefGoogle Scholar
  21. 21.
    Beck C, Härtl W, Hempelmann R (1999) J Chem Phys 111:8209CrossRefGoogle Scholar
  22. 22.
    Evers M, Garbow N, Hessinger D, Palberg T (1998) Phys Rev E 57:6774CrossRefGoogle Scholar
  23. 23.
    Schöpe H-J, Palberg T (2001) J Colloid Interface Sci 234:149–161CrossRefGoogle Scholar
  24. 24.
    Schöpe H-J Wette P, Palberg T (1998) J Chem Phys 109:10068(1998)CrossRefGoogle Scholar
  25. 25.
    Aastuen DJW, Clark NA, Swindal JC, Muzny CD (1990) Phase Transitions 21:139CrossRefGoogle Scholar
  26. 26.
    Pusey PN, van Megen W (1989) Physica A 157:705CrossRefGoogle Scholar
  27. 27.
    Simon R, Palberg T, Leiderer P (1993) J Chem Phys 99:3030CrossRefGoogle Scholar
  28. 28. (a)
    Bernai D (1960) Nature 188:908CrossRefGoogle Scholar
  29. 28. (b)
    Bernel D (1960) Nature 185:68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • H. -J. Schöpe
    • 1
  • T. Palberg
    • 1
  1. 1.Institut für Physik der Universität Mainz StaudingerMainzGermany

Personalised recommendations