Toward the Formal Foundation of Ant Programming

  • Mauro Birattari
  • Gianni Di Caro
  • Marco Dorigo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2463)


This paper develops the formal framework of ant programming with the goal of gaining a deeper understanding on ant colony optimization and, more in general, on the principles underlying the use of an iterated Monte Carlo approach for the multi-stage solution of combinatorial optimization problems. Ant programming searches for the optimal policy of a multi-stage decision problem to which the original combinatorial problem is reduced. In order to describe ant programming we adopt on the one hand concepts of optimal control, and on the other hand the ant metaphor suggested by ant colony optimization. In this context, a critical analysis is given of notions such as state, representation, and sequential decision process under incomplete information.


State Graph Markov Property Formal Foundation Original Optimization Problem Forward Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Beckers, J. L. Deneubourg, and S. Goss. Trails and U-turns in the selection of the shortest path by the ant Lasius Niger. Journal of Theoretical Biology, 159:397–415, 1992.CrossRefGoogle Scholar
  2. 2.
    R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.Google Scholar
  3. 3.
    D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA, USA, 1995. Vols. I and II.zbMATHGoogle Scholar
  4. 4.
    M. Birattari, G. Di Caro, and M. Dorigo. For a formal foundation of the Ant Programming approach to combinatorial optimization. Part 1: The problem, the representation, and the general solution strategy. Technical Report TR-H-301, ATR Human Information Processing Research Laboratories, Kyoto, Japan, 2000.Google Scholar
  5. 5.
    V. Boltyanskii. Optimal Control of Discrete Systems. John Wiley & Sons, New York, NY, USA, 1978.Google Scholar
  6. 6.
    M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy, 1992.Google Scholar
  7. 7.
    M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy. Future Generation Computer Systems, 16(8):851–871, 2000.Google Scholar
  8. 8.
    M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw-Hill, NewYork, NY, USA, 1999.Google Scholar
  9. 9.
    M. Dorigo, G. Di Caro, and T. Stützle (Editors). Special issue on “Ant Algorithms”. Future Generation Computer Systems, 16(8), 2000.Google Scholar
  10. 10.
    M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for distributed discrete optimization. Artificial Life, 5(2):137–172, 1999.CrossRefGoogle Scholar
  11. 11.
    M. Dorigo, V. Maniezzo, and A. Colorni. The ant system:An autocatalytic optimizing process. Technical Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy, 1991.Google Scholar
  12. 12.
    M. Dorigo, M. Zlochin, N. Meuleau, and M. Birattari. Updating ACO pheromones using stochastic gradient ascent and cross-entropy methods. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and R. Raidl, editors, EvoCOP 2002: Applications of Evolutionary Computing, volume 2279 of Lecture Notes in Computer Science, pages 21–30. Springer-Verlag, Heidelberg, Germany, 2002CrossRefGoogle Scholar
  13. 13.
    P. P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6:41–81, 1959.Google Scholar
  14. 14.
    W. Gutjahr. A graph-based ant system and its convergence. Special issue on Ant Algorithms, Future Generation Computer Systems, 16(8):873–888, 2000.CrossRefGoogle Scholar
  15. 15.
    N. Meuleau and M. Dorigo. Ant colony optimization and stochastic gradient descent. Artificial Life, 8(2):103–121, 2002.CrossRefGoogle Scholar
  16. 16.
    T. Stützle and M. Dorigo. A short convergence proof for a class of ACO algorithms. IEEE Transactions on Evolutionary Computation, 6(4), 2002, in press.Google Scholar
  17. 17.
    R. S. Sutton and A. G. Barto. Reinforcement Learning. An Introduction. MIT Press, Cambridge, MA, USA, 1998.Google Scholar
  18. 18.
    C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, United Kingdom, 1989.Google Scholar
  19. 19.
    S. D. Whitehead and D. H. Ballard. Learning to perceive and act. Machine Learning, 7(1):45–83, 1991.Google Scholar
  20. 20.
    L. Zadeh and C. Desoer. Linear System Theory. McGraw-Hill, NewYork, NY, USA, 1963.zbMATHGoogle Scholar
  21. 21.
    M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-base search for combinatorial optimization. Technical Report TR/IRIDIA/2001-15, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Mauro Birattari
    • 1
  • Gianni Di Caro
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations