Advertisement

Solving NP-Complete Problems with Networks of Evolutionary Processors

  • Juan Castellanos
  • Carlos Martín-Vide
  • Victor Mitrana
  • Jose M. Sempere
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2084)

Abstract

We propose a computational device based on evolutionary rules and communication within a network, similar to that introduced in [4], called network of evolutionary processors. An NP-complete problem is solved by networks of evolutionary processors of linear size in linear time. Some further directions of research are finally discussed.

Keywords

Evolutionary Step Evolution Rule Underlying Graph Communication Step Node Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Banâtre, A. Coutant, D. Le Metayer, A parallel machine for multiset transformation and its programming style, Future Generation Computer Systems, 4 (1988), 133–144.CrossRefGoogle Scholar
  2. 2.
    R. Constable, H. Hunt, S. Sahni, On the computational complexity of scheme equivalence, Technical Report No. 74-201, Dept. of Computer Science, Cornell University, Ithaca, NY, 1974.Google Scholar
  3. 3.
    E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Paun-Grammar Systems, Gordon and Breach, 1993.Google Scholar
  4. 4.
    E. Csuhaj-Varjú, Networks of parallel language processors. In New Trends in Formal Languages (Gh. Păun, A. Salomaa, eds.), LNCS 1218, Springer Verlag, 1997, 299–318Google Scholar
  5. 5.
    L. Errico, C. Jesshope, Towards a new architecture for symbolic processing. In Artificial Intelligence and Information-Control Systems of Robots’ 94 (I. Plander, ed.), World Sci. Publ., Singapore, 1994, 31–40.Google Scholar
  6. 6.
    S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures for AI: NETL, THISTLE and Boltzmann machines. In Proc. AAAI National Conf. on AI, William Kaufman, Los Altos, 1983, 109–113.Google Scholar
  7. 7.
    M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of NP-completeness, Freeman, San Francisco, CA, 1979.Google Scholar
  8. 8.
    W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.Google Scholar
  9. 9.
    J. Hopcroft, J. Ulmann, Formal Languages and Their Relation to Automata, Addison-Wesley, Reading, MA, 1969.zbMATHGoogle Scholar
  10. 10.
    L. Kari, G. Gloor, S. Yu, Using DNA to solve the Bounded Correspondence Problem, Theoret. Comput. Sci., 231 (2000), 193–203.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gh. Păun, Computing with membranes, J. Comput. Syst. Sci. 61(2000). (see also TUCS Research Report No. 208, November 1998, http://www.tucs.fi.)
  12. 12.
    Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms, Springer-Verlag, Berlin, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Juan Castellanos
    • 1
  • Carlos Martín-Vide
    • 2
  • Victor Mitrana
    • 3
  • Jose M. Sempere
    • 4
  1. 1.Dept. Inteligencia Artificial - Facultad de InformáticaUniversidad de Madrid - Campus de MontegancedoMadridSpain
  2. 2.Research Group in Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  3. 3.Faculty of MathematicsUniversity of BucharestBucharestRomania
  4. 4.Department of Information Systema and ComputationPolytechnical University of ValenciaValenciaSpain

Personalised recommendations