Advertisement

The Branching Point Approach to Conway’s Problem

  • Juhani Karhumäki
  • Ion Petre
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2300)

Abstract

A word u is a branching point for a set of words X if there are two different letters a and b such that both ua and ub can be extended to words in X +. A branching point u is critical for X if uX +. Using these notions, we give an elementary solution for Conway’s Problem in the case of finite biprefixes. We also discuss a possible extension of this approach towards a complete solution for Conway’s Problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bergman, Centralizers in Free Associative Algebras, Transactions of the American Mathematical Society 137: 327–344, 1969.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Berstel, D. Perrin, Theory of Codes, Academic Press, New York, 1985.MATHGoogle Scholar
  3. 3.
    C. Choffrut, J. Karhumäki, Combinatorics onWords. In G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 1: 329–438, Springer-Verlag, 1997.Google Scholar
  4. 4.
    C. Choffrut, J. Karhumäki, N. Ollinger, The Commutation of Finite Sets: A Challenging Problem, Theoret. Comput. Sci., to appear.Google Scholar
  5. 5.
    P.M. Cohn, Centralisateurs dans les corps libres, in J. Berstel (Ed.), Séries formelles: 45–54, Paris, 1978.Google Scholar
  6. 6.
    J.H. Conway, Regular Algebra and Finite Machines, Chapman Hall, 1971.Google Scholar
  7. 7.
    T. Harju, I. Petre, On Commutation and Primitive Roots of Codes, Submitted.Google Scholar
  8. 8.
    J. Karhumäki, Challenges of Commutation: An Advertisement, in Proc. of FCT 2001, LNCS 2138, 15–23, Springer, 2001.Google Scholar
  9. 9.
    J. Karhumäki, I. Petre, Conway’s Problem for Three Word Sets, Theoret. Comput. Sci., to appear; preliminary version in Proc. ICALP 2000, LNCS 1853 536–546, Springer, 2000.Google Scholar
  10. 10.
    J. Karhumäki, I. Petre, Conway’s Problem and the Commutation of Languages, Bulletin of EATCS 74, 171–177, 2001.MATHGoogle Scholar
  11. 11.
    M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA., 1983.MATHGoogle Scholar
  12. 12.
    M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, to appear.Google Scholar
  13. 13.
    A. Mateescu, A. Salomaa, S. Yu, On the Decomposition of Finite Languages, TUCS Technical Report 222, http://www.tucs/, 1998.
  14. 14.
    D. Perrin, Codes Conjugués, Information and Control 20: 222–231, 1972.CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    B. Ratoandromanana, Codes et Motifs, RAIRO Inform. Theor., 23(4): 425–444, 1989.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Juhani Karhumäki
    • 1
  • Ion Petre
    • 1
  1. 1.Department of MathematicsUniversity of Turku and Turku Centre for Computer Science (TUCS)TurkuFinland

Personalised recommendations