Private Computation — k-Connected versus 1-Connected Networks

  • Markus Bläser
  • Andreas Jakoby
  • Maciej Liśkiewicz
  • Bodo Siebert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2442)


We study the role of connectivity of communication networks in private computations under information theoretic settings. It will be shown that some functions can be computed by private protocols even if the underlying network is 1-connected but not 2-connected. Then we give a complete characterisation of non-degenerate functions that can be computed on non-2-connected networks.

Furthermore, a general technique for simulating private protocols on arbitrary networks will be presented. Using this technique every private protocol can be simulated on arbitrary k-connected networks using only a small number of additional random bits.

Finally, we give matching lower and upper bounds for the number of random bits needed to compute the parity function on k-connected networks.


Boolean Function Parity Function Input String Random String Communication Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Alon, J. H. Spencer, and P. Erdös. The Probabilistic Method. John Wiley and Sons, 1992.Google Scholar
  2. 2.
    J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In Proc. 8th Ann. Symp. on Principles of Distributed Comput. (PODC), pages 201–209. ACM, 1989.Google Scholar
  3. 3.
    M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-tolerant distributed computation. In Proc. 20th Ann. Symp. on Theory of Comput. (STOC), pages 1–10. ACM, 1988.Google Scholar
  4. 4.
    C. Blundo, A. de Santis, G. Persiano, and U. Vaccaro. Randomness complexity of private computation. Comput. Complexity, 8(2):145–168, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Canetti and R. Ostrovsky. Secure computation with honest-looking parties: What if nobody is truly honest? In Proc. 31st Ann. Symp. on Theory of Comput. (STOC), pages 255–264. ACM, 1999.Google Scholar
  6. 6.
    D. Chaum, C. Crépeau, and I. Damgøard. Multiparty unconditionally secure protocols. In Proc. 20th Ann. Symp. on Theory of Comput. (STOC), pages 11–19. ACM, 1988.Google Scholar
  7. 7.
    B. Chor, M. Geréb-Graus, and E. Kushilevitz. On the structure of the privacy hierarchy. J. Cryptology, 7(1):53–60, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    B. Chor, M. Geréb-Graus, and E. Kushilevitz. Private computations over the integers. SIAM J. Comput., 24(2):376–386, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete Math., 4(1):36–47, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. Chor and E. Kushilevitz. A communication-privacy tradeoff for modular addition. Inform. Process. Lett., 45(4):205–210, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Y. Egawa, R. Glas, and S. C. Locke. Cycles and paths through specified vertices in k-connected graphs. J. Combin. Theory Ser. B, 52:20–29, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Franklin and R. N. Wright. Secure communication in minimal connectivity models. J. Cryptology, 13(1):9–30, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Franklin and M. Yung. Secure hypergraphs: Privacy from partial broadcast. In Proc. 27th Ann. Symp. on Theory of Comput. (STOC), pages 36–44. ACM, 1995.Google Scholar
  14. 14.
    A. Gál and A. Rosén. A theorem on sensitivity and applications in private computation. In Proc. 31st Ann. Symp. on Theory of Comput. (STOC), pages 348–357. ACM, 1999.Google Scholar
  15. 15.
    O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority. In Proc. 19th Ann. Symp. on Theory of Comput. (STOC), pages 218–229. ACM, 1987.Google Scholar
  16. 16.
    E. Kushilevitz. Privacy and communication complexity. SIAM J. Discrete Math., 5(2):273–284, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    E. Kushilevitz and Y. Mansour. Randomness in private computations. SIAM J. Discrete Math., 10(4):647–661, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    E. Kushilevitz, R. Ostrovsky, and A. Rosén. Characterizing linear size circuits in terms of privacy. J. Comput. System Sci., 58(1):129–136, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    E. Kushilevitz and A. Rosén. A randomness-rounds tradeoff in private computation. SIAM J. Discrete Math., 11(1):61–80, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.zbMATHGoogle Scholar
  21. 21.
    A. C.-C. Yao. Protocols for secure computations. In Proc. 23rd Ann. Symp. on Foundations of Comput. Sci. (FOCS), pages 160–164. IEEE, 1982.Google Scholar
  22. 22.
    A. C.-C. Yao. How to generate and exchange secrets. In Proc. 27th Ann. Symp. on Foundations of Comput. Sci. (FOCS), pages 162–167. IEEE, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Markus Bläser
    • 1
  • Andreas Jakoby
    • 1
  • Maciej Liśkiewicz
    • 1
  • Bodo Siebert
    • 1
  1. 1.Institut für Theoretische InformatikUniversität zu LübeckLübeckGermany

Personalised recommendations