Stochastic Simulation of a Marine Host-Parasite System Using a Hybrid MPI/OpenMP Programming

  • Michel Langlais
  • Guillaume Latu
  • Jean Roman
  • Patrick Silan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2400)


We are interested in a host-parasite system occuring in fish farms, i.e. the sea bass - Diplectanum aequans system. A discrete mathematical model is used to describe the dynamics of both populations. A deterministic numerical simulator and, lately, a stochastic simulator were developed to study this biological system. Parallelization is required because execution times are too long. The Monte Carlo algorithm of the stochastic simulator and its three levels of parallelism are described. Analysis and performances, up to 256 processors, of a hybrid MPI/OpenMP code are then presented for a cluster of SMP nodes. Qualitative results are given for the host-parasite system.


Execution Time Stochastic Simulation Adult Parasite Hybrid Code Costly Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bernaschi, F. Castiglione, and S. Succi. A parallel algorithm for the simulation of the immune response. In WAE’97 Proceedings: Workshop on Algorithm Engineering, Venice Italy, September 1997.Google Scholar
  2. 2.
    M.W. Berry and K.S. Minser. Distributed Land-Cover Change Simulation Using PVM and MPI. In Proc. of the Land Use Modeling Workshop, 1997, June 1997.Google Scholar
  3. 3.
    C. Bouloux, M. Langlais, and P. Silan. A marine host-parasite model with direct biological cycle and age structure. Ecological Modelling, 107:73–86, 1998.CrossRefGoogle Scholar
  4. 4.
    M. Flechsig. Strictly parallelized regional integrated numeric tool for simulation. Technical report, Postdam Institue for Climate Impact Reasearch, Telegrafenberg, D-14473 Postdam, 1999.Google Scholar
  5. 5.
    M. Langlais, G. Latu, J. Roman, and P. Silan. Parallel numerical simulation of a marine host-parasite system. In P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé, L. Giraud, and D. Ruiz, editors, Europar’99 Parallel Processing, pages 677–685. LNCS 1685-Springer Verlag, 1999.Google Scholar
  6. 6.
    M. Langlais and P. Silan. Theoretical and mathematical approach of some regulation mechanisms in a marine host-parasite system. Journal of Biological Systems, 3(2):559–568, 1995.CrossRefGoogle Scholar
  7. 7.
    G. Latu. Solution parallèle pour un problème de dynamique de population. Technique et Science Informatiques, 19:767–790, June 2000.Google Scholar
  8. 8.
    H. Lorek and M. Sonnenschein. Using parallel computers to simulate individual-oriented models in ecology: a case study. In Proceedings: ESM’95 European Simulation Multiconference, Prag, June 1995.Google Scholar
  9. 9.
    B. Maniatty, B. Szymanski, and T. Caraco. High-performance computing tools for modeling evolution in epidemics. In Proc. of the 32nd Hawaii International Conference on System Sciences, 1999.Google Scholar
  10. 10.
    N. Masuda and F. Zimmermann. PRNGlib: A Parallel Random Number Generator Library, 1996. TR-96-08,
  11. 11.
    OpenMP. A Proposed Industry Standard API for Shared Memory Programming. October 1997, OpenMP Forum,
  12. 12.
    P. Silan, M. Langlais, and C. Bouloux. Dynamique des populations et modélisation: Application aux systèmes hôtes-macroparasites et à l’épidémiologie en environnement marin. In C.N.R.S eds, editor, Tendances nouvelles en modélisation pour lénvironnement. Elsevier, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michel Langlais
    • 1
  • Guillaume Latu
    • 2
  • Jean Roman
    • 2
  • Patrick Silan
    • 3
  1. 1.MABUMR CNRS 5466Bordeaux CedexFrance
  2. 2.LaBRIUMR CNRS 5800TalenceFrance
  3. 3.UMR CNRS 5000SèteFrance

Personalised recommendations