Advertisement

On the Optimality of Feautrier’s Scheduling Algorithm

  • Frédéric Vivien
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2400)

Abstract

Feautrier’s scheduling algorithm is the most powerful existing algorithm for parallelism detection and extraction. But it has always been known to be suboptimal. However, the question whether it may miss some parallelism because of its design was still open. We show that this is not the case. Therefore, to find more parallelism than this algorithm does, one needs to get rid of some of the hypotheses underlying its framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific programs for parallel execution. In Proceedings of the Fourteenth Annual ACM Symposium on Principles of Programming Languages, pages 63–76, Munich, Germany, Jan. 1987.Google Scholar
  2. 2.
    J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel form. Technical Report MASC-TR82-6, Rice University, Houston, TX, USA, 1982.Google Scholar
  3. 3.
    A. Darte. De l’organisation des calculs dans les codes répétitifs. Habilitation thesis, ècole normale supérieure de Lyon, 1999.Google Scholar
  4. 4.
    A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization. Birkhäuser Boston, 2000. ISBN 0-8176-4149-1.zbMATHGoogle Scholar
  5. 5.
    A. Darte and F. Vivien. Optimal Fine and Medium Grain Parallelism Detection in Polyhedral Reduced Dependence Graphs. Int. J. of Parallel Programming, 1997.Google Scholar
  6. 6.
    P. Feautrier. Dataflow analysis of array and scalar references. International Journal of Parallel Programming, 20(1):23–51, 1991.zbMATHCrossRefGoogle Scholar
  7. 7.
    P. Feautrier. Some efficient solutions to the affine scheduling problem, part I: One-dimensional time. Int. J. Parallel Programming, 21(5):313–348, Oct. 1992.Google Scholar
  8. 8.
    P. Feautrier. Some efficient solutions to the affine scheduling problem, part II: Multi-dimensional time. Int. J. Parallel Programming, 21(6):389–420, Dec. 1992.Google Scholar
  9. 9.
    M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting. International Journal of Parallel Programming, 28(6):607–631, 2000.CrossRefGoogle Scholar
  10. 10.
    L. Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83–93, Feb. 1974.Google Scholar
  11. 11.
    V. Loechner and D. K. Wilde. Parameterized polyhedra and their vertices. International Journal of Parallel Programming, 25(6), Dec. 1997.Google Scholar
  12. 12.
    P. Quinton. Automata Networks in Computer Science, chapter The systematic design of systolic arrays. Manchester University Press, 1987.Google Scholar
  13. 13.
    A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New York, 1986.zbMATHGoogle Scholar
  14. 14.
    F. Vivien. On the Optimality of Feautrier’s Scheduling Algorithm. Technical Report 02-04, ICPS-LSIIT, ULP-Strasbourg I, France, rs http://icps.u-strasbg.fr URL, 2002.Google Scholar
  15. 15.
    M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In SIGPLAN Conference PLDI, pages 30–44. ACM Press, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Frédéric Vivien
    • 1
  1. 1.ICPS-LSIITUniversité Louis PasteurPôle ApiFrance

Personalised recommendations