Weak Communication in Radio Networks

  • Tomasz Jurdziński
  • Mirosław Kutyłowski
  • Jan Zatopiański
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2400)


Quite often algorithms designed for no-collision-detection radio networks use a hidden form of collision detection: it is assumed that a station can simultaneously send and listen. Then, if it cannot hear its own message, then apparently a collision has occurred. IEEE Standard 802.11 says that a station can either send or listen to a radio channel, but not both. So we consider a weak radio network model with no collision detection where a station can either send or receive signals. Otherwise we talk about strong model.

We show that power of weak and strong radio networks differ substantially in deterministic case. On the other hand, we present an efficient simulation of strong by weak ones, with randomized preprocessing of O(n) steps and O(loglogn) energy cost.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Azar, A.Z. Broder, A.R. Karlin, U. Upfal, Balanced Allocations, SIAM Journal on Computing: 180–200(1999).Google Scholar
  2. 2.
    J.L. Bordim, J. Cui, T. Hayashi, K. Nakano, S. Olariu, Energy efficient initialization protocols for ad-hoc radio networks, ISAAC’99, LNCS 1741, Springer-Verlag, 215–224.Google Scholar
  3. 3.
    W.C. Fifer, F.J. Bruno, Low Cost Packet Radio, Proc. of the IEEE, 75 (1987), 33–42.CrossRefGoogle Scholar
  4. 4.
    L. Gcasieniec, A. Pelc, D. Peleg, The wakeup problem in synchronous broadcast systems, ACM PODC’2000, 113–121.Google Scholar
  5. 5.
    T. Jurdziński, M. Kutyłowski, J. Zatopiański, Energy-Efficient Size Approximation for Radio Networks with no Collision Detection, Computing and Combinatorics, COCOON’2002.Google Scholar
  6. 6.
    T. Jurdziński, M. Kutyłowski, J. Zatopiański, Efficient Algorithms for Leader Election in Radio Networks, ACM PODC’2002.Google Scholar
  7. 7.
    Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Weak Communication in Radio Networks, Tech. Rep. CSR-02-04, Techn. Universitat Chemnitz, Fakultät für Informatik, 2002.Google Scholar
  8. 8.
    E. Kushilevitz, Y. Mansour, Computation in Noisy Radio Networks, ACM-SIAM SODA’ 98, 236–243.Google Scholar
  9. 9.
    K. Nakano, S. Olariu, Randomized O (log log n)-round leader election protocols in radio networks, ISAAC’98, LNCS 1533, Springer-Verlag, 209–218.Google Scholar
  10. 10.
    K. Nakano, S. Olariu, Randomized leader election protocols for ad-hoc networks, SIROCCO’2000, Carleton Scientific, 253–267.Google Scholar
  11. 11.
    K. Nakano, S. Olariu, Randomized Leader Election Protocols in Radio Networks with No Collision Detection. ISAAC’2000, LNCS 1969, Springer-Verlag, 362–373.Google Scholar
  12. 12.
    K. Nakano, S. Olariu, Energy Efficient Initialization Protocols for Radio Networks with no Collision Detection, ICPP’2000, IEEE, 263–270.Google Scholar
  13. 13.
    R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.Google Scholar
  14. 14.
    S. Rajasekaran, J. H. Reif, J. D. P. Rolim, (Eds.), Handbook on Randomized Computing, Kluwer Academic Publishers, 2001.Google Scholar
  15. 15.
    D.E. Willard, Log-logarithmic selection resolution protocols in multiple access channel, SIAM Journal on Computing 15 (1986), 468–477.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    IEEE Standard for Information Technology-LAN/MAN: Wireless LAN Medium Access Control (MAC),

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Tomasz Jurdziński
    • 1
    • 2
  • Mirosław Kutyłowski
    • 3
    • 4
  • Jan Zatopiański
    • 2
  1. 1.Institute of Computer ScienceTechnical University of ChemnitzGermany
  2. 2.Institute of Computer ScienceWroclaw UniversityPoland
  3. 3.Institute of MathematicsWrocław University of TechnologyPoland
  4. 4.Dept. of Math. and Computer ScienceA. Mickiewicz UniversityPoznańPoland

Personalised recommendations