The 5 Colour Theorem in Isabelle/Isar

  • Gertrud Bauer
  • Tobias Nipkow
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2410)

Abstract

Based on an inductive definition of triangulations, a theory of undirected planar graphs is developed in Isabelle/HOL. The proof of the 5 colour theorem is discussed in some detail, emphasizing the readability of the computer assisted proofs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Appel and W. Haken. Every planar map is four colourable. Bulletin of the American mathematical Society, 82:711–112, 1977.MathSciNetCrossRefGoogle Scholar
  2. 2.
    K. Appel and W. Haken. Every planar map is four colourable. I: Discharging. Illinois J. math., 21:429–490, 1977.MATHMathSciNetGoogle Scholar
  3. 3.
    K. Appel and W. Haken. Every planar map is four colourable. II: Reducibility. Illinois J. math., 21:491–567, 1977.MATHMathSciNetGoogle Scholar
  4. 4.
    K. Appel and W. Haken. Every planar map is four colourable, volume 98. Contemporary Mathematics, 1989.Google Scholar
  5. 5.
    G. D. Birkhoff. The reducibility of maps. Amer. J. Math., 35:114–128, 1913.CrossRefMathSciNetGoogle Scholar
  6. 6.
    C.-T. Chou. A Formal Theory of Undirected Graphs in Higher-Order Logic. In T. Melham and J. Camilleri, editors, Higher Order Logic Theorem Proving and Its Applications, volume 859 of LNCS, pages 158–176, 1994.Google Scholar
  7. 7.
    R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2000. Electronic Version: http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/.
  8. 8.
    T. Emden-Weinert, S. Hougardy, B. Kreuter, H. Prömel, and A. Steger. Einführung in Graphen und Algorithmen, 1996. http://www.informatik.hu-berlin.de/Institut/struktur/algorithmen/ga/.
  9. 9.
    H. Heesch. Untersuchungen zum Vierfarbenproblem. Number 810/a/b in Hochschulskriptum. Bibliographisches Institut, Mannheim, 1969.MATHGoogle Scholar
  10. 10.
    T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. To appear.MATHGoogle Scholar
  11. 11.
    N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four colour theorem. http://www.math.gatech.edu/~thomas/FC/fourcolor.html, 1995.
  12. 12.
    N. Robertson, D. Sanders, P. Seymour, and R. Thomas. A new proof of the four colour theorem. Electron. Res. Announce. Amer. Math Soc., 2(1):17–25, 1996.CrossRefMathSciNetGoogle Scholar
  13. 13.
    N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four colour theorem. J. Combin. Theory Ser. B, 70:2–44, 1997.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Wenzel. Isabelle/Isar— A Versatile Environment for Human-Readable Formal Proof Documents. PhD thesis, Institut für Informatik, Technische Universität München, 2002. http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.htm.
  15. 15.
    D. West. Introduction to Graph Theory. Prentice Hall, New York, 1996.MATHGoogle Scholar
  16. 16.
    F. Wiedijk. The Four Color Theorem Project. http://www.cs.kun.nl/~freek/4ct/, 2000.
  17. 17.
    W. Wong. A simple graph theory and its application in railway signalling. In M. Archer, J. Joyce, K. Levitt, and P. Windley, editors, Proc. 1991 International Workshop on the HOL Theorem Proving System and its Applications, pages 395–409. IEEE Computer Society Press, 1992.Google Scholar
  18. 18.
    M. Yamamoto, S.-y. Nishizaha, M. Hagiya, and Y. Toda. Formalization of Planar Graphs. In E. Schubert, P. Windley, and J. Alves-Foss, editors, Higher Order Logic Theorem Proving and Its Applications, volume 971 of LNCS, pages 369–384, 1995.Google Scholar
  19. 19.
    M. Yamamoto, K. Takahashi, M. Hagiya, S.-y. Nishizaki, and T. Tamai. Formalization of Graph Search Algorithms and Its Applications. In J. Grundy and M. Newey, editors, Theorem Proving in Higher Order Logics, volume 1479 of LNCS, pages 479–496, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Gertrud Bauer
    • 1
  • Tobias Nipkow
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchenGermany

Personalised recommendations