Formalizing the Trading Theorem for the Classification of Surfaces

  • Christophe Dehlinger
  • Jean-François Dufourd
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2410)

Abstract

We study the formalization and then the proof of a well-known theorem of surface topology called the trading theorem. This is the first major work undertaken with our Coq specification of the generalized maps, which may be used as a model for surfaces subdivisions. We explain how we expressed in terms of subdivisions the notion of topological equivalence, and how we used this notion to prove the trading theorem, while giving a quick look at the specification we have built.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barras, B. et al.: The Coq proof assistant reference manual. http://coq.inria.fr/doc/main.html
  2. 2.
    Bertrand, G., Malgouyres, R.: Some topological properties of surfaces in Z3. Journal of Mathematical Imaging and Vision no 11 (1999) 207–221Google Scholar
  3. 3.
    Bertrand, Y., Dufourd, J.-F.: Algebraic specification of a 3D-modeler based on hypermaps. Graphical Models and Image Processing (1994) 56(1) 29–60CrossRefGoogle Scholar
  4. 4.
    Coquand, T., Huet, G.: Constructions: a higher order proof system for mechanizing mathematics. EUROCAL (1985) Springer-Verlag LNCS 203 Google Scholar
  5. 5.
    Cori, R.: Un Code pour les Graphes Planaires et ses Applications. Société Math. de France, Astérisque 27 (1970)Google Scholar
  6. 6.
    Dehlinger, C, Dufourd, J.-F., Schreck, P.: Higher-Order Intuitionistic Formalization and Proofs in Hubert’s Elementary Geometry. Automated Deduction in Geometry (2000) Springer-Verlag LNAI 2061 Google Scholar
  7. 7.
    Firby, P. A., Gardiner, C. F.: Surface Topology. Ellis Horwood Ltd. (1982)Google Scholar
  8. 8.
    Fomenko, A. T.: Differential Geometry and Topology. Consultant Associates (1987)Google Scholar
  9. 9.
    Griffiths, H.: Surfaces. Cambridge University Press (1981)Google Scholar
  10. 10.
    Jacques, A.: Constellations et graphes topologiques. Combinatorial Theory And Applications (1970) 657–673Google Scholar
  11. 11.
    Kahn, G.: Elements of Constructive Geometry, Group Theory, and Domain Theory. Coq contribution (http://coq.inria.fr/contribs-eng.html)
  12. 12.
    Knuth, D.E.: Axioms and Hulls. Springer-Verlag (1992) LNCS 606 MATHGoogle Scholar
  13. 13.
    Lienhardt, P.: Subdivisions of N-Dimensional Spaces and N-Dimensional Generalized Maps. Computational Geometry ACM Symp. (1989) 228–236Google Scholar
  14. 14.
    Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)Google Scholar
  15. 15.
    Parent, C: Synthesizing proofs from programs in the calculus of inductive constructions. Mathematics of Program Construction (1995) Springer-Verlag LNCS 947 Google Scholar
  16. 16.
    Pichardie, D., Bertot, Y.: Formalizing Convex Hulls Algorithms. TPHOL (2001) Springer-Verlag LNCS 2152 346–361Google Scholar
  17. 17.
    Puitg, F., Dufourd, J.-F.: Formal specifications and theorem proving breakthroughs in geometric modelling. TPHOL (1998) Springer-Verlag LNCS 1479 401–427Google Scholar
  18. 18.
    Von Plato, J.: The axioms of constructive geometry. Annals of pure and applied logic 76 (1995) 169–200MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Christophe Dehlinger
    • 1
  • Jean-François Dufourd
    • 1
  1. 1.Laboratoire des Sciences de l’Image, de l’Informatique et de la Télédétection (UMR CNRS 7005)Université Louis-Pasteur de StrasbourgIllkirchFrance

Personalised recommendations