Formalised Cut Admissibility for Display Logic

  • Jeremy E. Dawson
  • Rajeev Goré
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2410)


We use a deep embedding of the display calculus for relation algebras δRA in the logical framework Isabelle/HOL to formalise a machine-checked proof of cut-admissibility for δRA. Unlike other “implementations”, we explicitly formalise the structural induction in Isabelle/HOL and believe this to be the first full formalisation of cut-admissibility in the presence of explicit structural rules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N D Belnap. Display logic. Journal of Philosophical Logic, 11:375–417, 1982.MathSciNetMATHGoogle Scholar
  2. 2.
    Jeremy E Dawson and R Goré. Embedding display calculi into logical frameworks: Comparing Twelf and Isabelle. In C Fidge (Ed), Proc. CATS 2001: The Australian Theory Symposium, ENTCS, 42: 89–103, 2001, Elsevier.Google Scholar
  3. 3.
    J E. Dawson and R Gore. A new machine-checked proof of strong normalisation for display logic. Submitted 2001.Google Scholar
  4. 4.
    R Goré. Cut-free display calculi for relation algebras. In D van Dalen and M Bezem (Eds), CSL’96: Selected Papers of the Annual Conference of the European Association for Computer Science Logic, LNCS 1258:198–210. Springer, 1997.Google Scholar
  5. 5.
    R Goré. Substructural logics on display. Logic Journal of the Interest Group in Pure and Applied Logic, 6(3):451–504, 1998.MATHGoogle Scholar
  6. 6.
    J Harrison. Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI International Cambridge Computer Science Research Centre, 1995.Google Scholar
  7. 7.
    S Matthews. Implementing FS0 in Isabelle: adding structure at the metalevel. In J Calmet and C Limongelli, editors, Proc. Disco’96. Springer, 1996.Google Scholar
  8. 8.
    A Mikhajlova and J von Wright. Proving isomorphism of first-order proof systems in HOL. In J Grundy and M Newey, editors, Theorem Proving in Higher-Order Logics, LNCS 1479:295–314. Springer, 1998.CrossRefGoogle Scholar
  9. 9.
    F Pfenning. Structural cut elimination. In Proc. LICS 94, 1994.Google Scholar
  10. 10.
    C Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis, Dept. of Comp. Sci., Carnegie Mellon University, USA, CMU-CS-00-146, 2000.Google Scholar
  11. 11.
    H Wansing. Displaying Modal Logic, volume 3 of Trends in Logic. Kluwer Academic Publishers, Dordrecht, August 1998.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jeremy E. Dawson
    • 1
  • Rajeev Goré
    • 1
  1. 1.Department of Computer Science and Automated Reasoning GroupAustralian National UniversityCanberraAustralia

Personalised recommendations