Efficient Traitor Tracing Algorithms Using List Decoding

  • Alice Silverberg
  • Jessica Staddon
  • Judy L. Walker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2248)

Abstract

We use powerful new techniques for list decoding error-correcting codes to efficiently trace traitors. Although much work has focused on constructing traceability schemes, the complexity of the tracing algorithm has received little attention. Because the TA tracing algorithm has a runtime of O(N) in general, where N is the number of users, it is inefficient for large populations. We produce schemes for which the TA algorithm is very fast. The IPP tracing algorithm, though less efficient, can list all coalitions capable of constructing a given pirate. We give evidence that when using an algebraic structure, the ability to trace with the IPP algorithm implies the ability to trace with the TA algorithm. We also construct schemes with an algorithm that finds all possible traitor coalitions faster than the IPP algorithm. Finally, we suggest uses for other decoding techniques in the presence of additional information about traitor behavior.

References

  1. 1.
    N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth. Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information Theory 38 (1992), 509–516.CrossRefGoogle Scholar
  2. 2.
    A. Barg, G. Cohen, S. Encheva, G. Kabatiansky and G. Zémor. A hypergraph approach to the identifying parent property: the case of multiple parents, DIMACS Technical Report 2000-20.Google Scholar
  3. 3.
    O. Berkman, M. Parnas and J. Sgall. Efficient dynamic traitor tracing, in 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), 586–595.Google Scholar
  4. 4.
    E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg. On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24 (1978), 384–386.MATHCrossRefGoogle Scholar
  5. 5.
    D. Boneh and M. Franklin. An efficient public key traitor tracing scheme, in “Advances in Cryptology — Crypto’ 99”, Lecture Notes in Computer Science 1666 (1999), 338–353.Google Scholar
  6. 6.
    D. Boneh and J. Shaw. Collusion secure fingerprinting for digital data, in “Advances in Cryptology — Crypto’ 95”, Lecture Notes in Computer Science 963 (1995), 452–465.Google Scholar
  7. 7.
    D. Boneh and J. Shaw. Collusion secure fingerprinting for digital data, IEEE Transactions on Information Theory 44 (1998), 1897–1905.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. Cox, J. Kilian, T. Leighton and T. Shamoon. Secure spreadsp ectrum watermarking for multimedia. IEEE Transactions on Information Theory 6 (1997), 1673–1687.Google Scholar
  9. 9.
    B. Chor, A. Fiat and M. Naor. Tracing traitors, in “Advances in Cryptology —Crypto’ 94”, Lecture Notes in Computer Science 839 (1994), 480–491.Google Scholar
  10. 10.
    B. Chor, A. Fiat, M. Naor and B. Pinkas. Tracing traitors, IEEE Transactions on Information Theory 46 (2000), 893–910.MATHCrossRefGoogle Scholar
  11. 11.
    C. Dwork, J. Lotspiech and M. Naor. Digital Signets: Self-Enforcing Protection of Digital Information, in Proc. 28th ACM Symposium on Theory of Computing (STOC 1997), 489–498.Google Scholar
  12. 12.
    G.-L. Feng. Very Fast Algorithms in Sudan Decoding Procedure for Reed-Solomon Codes. Preprint.Google Scholar
  13. 13.
    G.-L. Feng. Fast Algorithms in Sudan Decoding Procedure for Hermitian Codes. Preprint.Google Scholar
  14. 14.
    A. Fiat and M. Naor. Broadcast Encryption, in “Advances in Cryptology — Crypto’ 93”, Lecture Notes in Computer Science 773 (1994), 480–491.Google Scholar
  15. 15.
    A. Fiat and T. Tassa. Dynamic traitor tracing, in “Advances in Cryptology — Crypto’ 99”, Lecture Notes in Computer Science 1666 (1999), 354–371.Google Scholar
  16. 16.
    E. Gafni, J. Staddon and Y. L. Yin. Efficient methods for integrating traceability and broadcast encryption, in “Advances in Cryptology — Crypto’ 99”, Lecture Notes in Computer Science 1666 (1999), 372–387.Google Scholar
  17. 17.
    J. Garay, J. Staddon and A. Wool, Long-Lived Broadcast Encryption, in “Advances in Cryptology — Crypto 2000”, Lecture Notes in Computer Science 1880 (2000), 333–352.CrossRefGoogle Scholar
  18. 18.
    V. D. Goppa. Geometry and codes. Kluwer Academic Publishers, Dordrecht, 1988.MATHGoogle Scholar
  19. 19.
    V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraicgeometry codes, IEEE Transactions on Information Theory 45(6) (1999), 1757–1767.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    V. Guruswami and M. Sudan. List decoding algorithms for certain concatenated codes, in Proc. 32nd ACM Symposium on Theory of Computing (STOC 2000), 181–190.Google Scholar
  21. 21.
    T. Høholdt and R. R. Nielsen. Decoding Reed-Solomon codes beyond half the minimum distance, in Coding theory, cryptography and related areas (Guanajuato, 1998), Springer, Berlin (2000), 221–236.Google Scholar
  22. 22.
    T. Høholdt and R. R. Nielsen. Decoding Hermitian codes with Sudan’s algorithm. To appear in the 13th AAECC Symposium.Google Scholar
  23. 23.
    H. D. L. Hollmann, J. H. van Lint, J-P. Linnartz and L. M. G. M. Tolhuizen. On codes with the identifiable parent property, Journal of Combinatorial Theory A 82 (1998), 121–133.MATHCrossRefGoogle Scholar
  24. 24.
    R. Koetter and A. Vardy. Algebraic soft-decision decoding of Reed-Solomon codes. Preprint. http://www.dia.unisa.it/isit2000/lavori/455.ps.
  25. 25.
    R. Kumar, S. Rajagopalan and A. Sahai. Coding constructions for blacklisting problems without computational assumptions, in “Advances in Cryptology — Crypto’ 99”, Lecture Notes in Computer Science 1666 (1999), 609–623.Google Scholar
  26. 26.
    K. Kurosawa, M. Burmester and Y. Desmedt. A proven secure tracing algorithm for the optimal KD traitor tracing scheme. DIMACS Workshop on Management of Digital Intellectual Properties, April, 2000, and Euro crypt 2000 rump session.Google Scholar
  27. 27.
    K. Kurosawa and Y. Desmedt. Optimal traitor tracing andasymmetric schemes, in “Advances in Cryptology — Eurocrypt’ 98”, Lecture Notes in Computer Science 1438 (1998), 145–157.CrossRefGoogle Scholar
  28. 28.
    J. H. van Lint. Introduction to coding theory. Third edition. Graduate Texts in Mathematics 86, Springer-Verlag, Berlin (1999).Google Scholar
  29. 29.
    M. Naor and B. Pinkas. Efficient Trace and Revoke Schemes, to appear in Proceedings of Financial Cryptography 2000.Google Scholar
  30. 30.
    V. Olshevsky and A. Shokrollahi. A displacement structure approach to efficient decoding of algebraic geometric codes, in Proc. 31st ACM Symposium on Theory of Computing (STOC 1999), 235–244.Google Scholar
  31. 31.
    B. Pfitzmann. Trials of tracedtraitors, in Information Hiding, First International Workshop, Lecture Notes in Computer Science 1174 (1996), 49–64.Google Scholar
  32. 32.
    R. M. Roth and G. Ruckenstein. Efficient decoding of Reed-Solomon codes beyond half the minimum distance. IEEE Transactions on Information Theory 46 (2000), 246–257.Google Scholar
  33. 33.
    R. Safavi-Naini and Y. Wang. Sequential Traitor Tracing, in “Advances in Cryptology — CRYPTO 2000”, Lecture Notes in Computer Science 1880 (2000), 316–332.CrossRefGoogle Scholar
  34. 34.
    B.-Z. Shen. A Justesen construction of binary concatenatedco des that asymptotically meet the Zyablov boundfor low rate, IEEE Transactions on Information Theory 39 (1993), 239–242.MATHCrossRefGoogle Scholar
  35. 35.
    M. A. Shokrollahi and H. Wassermann. Decoding Algebraic-Geometric Codes Beyondthe Error-Correction Bound, in Proc. 30th ACM Symposium on Theory of Computing (STOC 1998), 241–248.Google Scholar
  36. 36.
    M. A. Shokrollahi and H. Wassermann. List Decoding of Algebraic-Geometric Codes. IEEE Transactions on Information Theory 45 (1999), 893–910.CrossRefGoogle Scholar
  37. 37.
    J. N. Staddon, D. R. Stinson and R. Wei. Combinatorial properties of frameproof and traceability codes. To appear in IEEE Transactions on Information Theory.Google Scholar
  38. 38.
    H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, Berlin, 1993.MATHGoogle Scholar
  39. 39.
    D. R. Stinson, Tran van Trung and R. Wei. Secure frameproof codes, key distribution patterns, group testing algorithms andrelatedstructures, Journal of Statistical Planning and Inference 86 (2000), 595–617.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    D. R. Stinson and R. Wei. Combinatorial properties andconstructions of traceability schemes andframepro of codes, SIAM Journal on Discrete Mathematics 11 (1998), 41–53.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    D. R. Stinson and R. Wei. Key preassigned traceability schemes for broadcast encryption, in “SelectedAreas in Cryptology — SAC’ 98”, Lecture Notes in Computer Science 1556 (1999), 144–156.Google Scholar
  42. 42.
    M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. Journal of Complexity 13(1) (1997), 180–193.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    M. Sudan. Decoding of Reed Solomon codes beyond the error-correction diameter, in Proc. 35th Annual Allerton Conference on Communication, Control and Computing (1997), 215–224.Google Scholar
  44. 44.
    M. A. Tsfasman and S. G. Vlăduţ. Algebraic-geometric codes. Kluwer Academic Publishers, Dordrecht, 1991.MATHGoogle Scholar
  45. 45.
    M. A. Tsfasman, S. G. Vlăduţ. and Th. Zink. Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr. 109 (1982), 21–28.MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    W.-G. Tzeng and Z.-J. Tzeng. A Traitor Tracing Scheme Using Dynamic Shares, to appear in PKC2001.Google Scholar
  47. 47.
    X.-W. Wu and P. H. Siegel. Efficient List Decoding of Algebraic Geometric Codes Beyondthe Error Correction Bound, submittedto IEEE Transactions on Information Theory.Google Scholar
  48. 48.
    F. Zane. Efficient Watermark Detection andCollusion Security, to appear in Proceedings of Financial Cryptography 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alice Silverberg
    • 1
  • Jessica Staddon
    • 2
  • Judy L. Walker
    • 3
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA
  2. 2.Xerox PARCPalo AltoUSA
  3. 3.Department of Mathematics and StatisticsUniversity of NebraskaLincolnUSA

Personalised recommendations