Multi-recipient Public-Key Encryption with Shortened Ciphertext

  • Kaoru Kurosawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2274)

Abstract

In the trivial n-recipient public-key encryption scheme, a ciphertext is a concatenation of independently encrypted messages for n recipients. In this paper, we say that an n-recipient scheme has a “shortened ciphertext” property if the length of the ciphertext is almost a half (or less) of the trivial scheme and the security is still almost the same as the underlying single-recipient scheme. We first present (multi-plaintext, multi-recipient) schemes with the “shortened ciphertext” property for ElGamal scheme and Cramer-Shoup scheme. We next show (single-plaintext, multi-recipient) hybrid encryption schemes with the “shortened ciphertext” property.

References

  1. 1.
    O. Baudron, D. Pointcheval and J. Stern: “Extended Notions of Security for Multicast Public Key Cryptosystems”, ICALP’ 2000 (2000)Google Scholar
  2. 2.
    M. Bellare, A. Boldyreva and S. Micali: “Public-key encryption in a multi-recipient setting: Security proofs and improvements”, Advances in Cryptology-Eurocrypt’ 2000 Proceedings, Lecture Notes in Computer Science Vol.1807, Springer Verlag, pp.259–274 (2000)Google Scholar
  3. 3.
    M. Bellare and P. Rogaway: “Random oracles are practical: A paradigm for designing efficient protocols”, Proc. of the 1st CCS, pp.62–73, ACM Press, New York, 1993. (http://www-cse.ucsd.edu/users/mihir/crypto2k)
  4. 4.
    D. Boneh: “Simplified OAEP for the RSA and Rabin Functions”, Advances in Cryptology-Crypto’2001 Proceedings, Lecture Notes in Computer Science Vol.2139, Springer Verlag, pp.275–291 (2001)Google Scholar
  5. 5.
    D. Bonehand M. Franklin: “An efficient public key traitor tracing scheme”, Advances in Cryptology-Crypto’99 Proceedings, Lecture Notes in Computer Science Vol.1666, Springer Verlag, pp.338–353 (1999)Google Scholar
  6. 6.
    B. Chor, A. Fiat, and M. Naor, B. Pinkas: “Tracing traitors”, IEEE Trans. on IT, vol.46, no.3, pages 893–910 (2000).MATHCrossRefGoogle Scholar
  7. 7.
    D. Coppersmith: “Finding a small root of a univariate modular equation”, Advances in Cryptology-Eurocrypt’96 Proceedings, Lecture Notes in Computer Science Vol.1070, Springer Verlag, pp.155–165 (1996)Google Scholar
  8. 8.
    D. Coppersmith: “Small solutions to polynomial equations, and low exponent RSA vulnerabilities”, Journal of Cryptology, 10, pp.233–260 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. Cramer and V. Shoup: “A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack”, Advances in Cryptology-Crypto’98 Proceedings, Lecture Notes in Computer Science Vol.1462, Springer Verlag, pp.13–25 (1998)Google Scholar
  10. 10.
    S. Goldwasser and S. Micali: “Probabilistic encryption”, Journal Computer and System Sciences, vol.28, pp.270–299 (1984).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Hastad: “Solving simultaneous modular equations of low degree”, SIAM Journal of Computing, vol.17, pp.336–341 (1988).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    K. Kurosawa and Y. Desmedt: Optimum traitor tracing and asymmetric schemes witharbiter. Advances in Cryptology — Eurocrypt’98, Lecture Notes in Computer Science #1403, Springer Verlag (1999) 145–157Google Scholar
  13. 13.
    K. Kurosawa and T. Yoshida: “Linear code implies public-key traitor tracing”, PKC’02 (this proceedings)Google Scholar
  14. 14.
    M. Naor and O. Reingold: “Number theoretic constructions of efficient pseudorandom functions”, FOCS’97, pp.458–467 (1997).Google Scholar
  15. 15.
    M. Stadler: “Publicly verifiable secret sharing”, Advances in Cryptology-Eurocrypt’96 Proceedings, Lecture Notes in Computer Science Vol.1070, Springer Verlag, pp.190–199 (1996)Google Scholar
  16. 16.
    Y. Zheng and J. Seberry: “Practical approaches to attaining security against adaptively chosen ciphertext attacks”, Advances in Cryptology-Crypto’92 Proceedings, Lecture Notes in Computer Science Vol.740, Springer Verlag, pp.292–304 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Kaoru Kurosawa
    • 1
  1. 1.Department of Computer and Information SciencesIbaraki UniversityIbarakiJapan

Personalised recommendations