An Alternate Decomposition of an Integer for Faster Point Multiplication on Certain Elliptic Curves
Conference paper
First Online:
Abstract
In this paper the Gallant-Lambert-Vanstone method is reexamined for speeding up scalar multiplication. Using the theory of μ- Euclidian algorithm, we provide a rigorous method to reduce the theoretical bound for the decomposition of an integer k in the endomorphism ring of an elliptic curve. We then compare the two different methods for decomposition through computational implementations.
Download
to read the full conference paper text
References
- 1.Ian Blake, Gadiel Seroussi and Nigel Smart, ‘Elliptic Curves in Cryptography’, London Mathematical Society Lecture Note Series. 265, Cambridge University Press, (1999).Google Scholar
- 2.G. Cornacchia, “Su di un metodo per la risoluzione in numeri interi dell’ equazione Σhn=0C h x n−h y h = P”, Giornale di Matematiche di Battaglini, 46, (1908),33–90.Google Scholar
- 3.R. Gallant, R. Lambert and S. Vanstone, “Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms”, Advances in Cryptology-Crypto 2001, LNCS 2139, Springer-Verlag (2001), 190–200.CrossRefGoogle Scholar
- 4.K. Ireland and M. Rosen, ‘A classical introduction to modern number theory’, Graduate Texts in Mathematics, vol 84, Springer-Verlag, (1982).Google Scholar
- 5.N. Koblitz, “CM-curves with good cryptographic properties”, Advances in Cryptology-Crypto’ 91, LNCS 576, Springer-Verlag (1992), 279–287.CrossRefGoogle Scholar
- 6.V. Müller,“ Fast multiplication in elliptic curves over small fields of characteristic two”, Journal of Cryptology, 11 (1998), 219–234.zbMATHCrossRefGoogle Scholar
- 7.W. Meier and O. Staffelbach, “Efficient multiplication on certain nonsupersingular elliptic curves”, Advances in Cryptology-Crypto’92, Springer-Verlag (1992), 333–344.Google Scholar
- 8.S. Pohlig, M. Hellman,“An improved algorithm for computing logarithms over GF(p) its cryptographic significance,”, IEEE Trans. Inform. Theory, 24 (1978), 106–110.zbMATHCrossRefMathSciNetGoogle Scholar
- 9.D. Shanks, “Five number theoretic algorithms” In Proc. 2nd Manitoba Conference on Numerical Mathematics (1972), 51–70.Google Scholar
- 10.B. Vallée,“Une approche géométrique des algorithmes de réduction des réseaux en petite dimension”, (1986) Thése, Université de Caen.Google Scholar
- 11.N. Smart, “Elliptic curve cryptosystems over small fields of odd characteristic”, Journal of Cryptology, 12 (1999), 141–145.zbMATHCrossRefMathSciNetGoogle Scholar
- 12.J. Solinas, “An improved algorithm for arithmetic on a familyof elliptic curves”, Advances in Cryptology-Crypto’ 97, LNCS 1294, Springer-Verlag (1997), 357–371.CrossRefGoogle Scholar
- 13.J. Solinas, “Efficient arithmetic on Koblitz curves”, Design, Codes and Cryptography, 19 (2000), 195–249.zbMATHCrossRefMathSciNetGoogle Scholar
- 14.I. Stewart and D. Tall, “Algebraic Number Theory”, Chapman and Hall, Halsted Press, (1979).Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2002