NuSMV 2: An OpenSource Tool for Symbolic Model Checking

  • Alessandro Cimatti
  • Edmund Clarke
  • Enrico Giunchiglia
  • Fausto Giunchiglia
  • Marco Pistore
  • Marco Roveri
  • Roberto Sebastiani
  • Armando Tacchella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2404)


This paper describes version 2 of the NuSMV tool. NuSMV is a symbolic model checker originated from the reengineering, reimplementation and extension of SMV, the original BDD-based model checker developed at CMU [15]. The NuSMV project aims at the development of a state-of-the-art symbolic model checker, designed to be applicable in technology transfer projects: it is a well structured, open, flexible and documented platform for model checking, and is robust and close to industrial systems standards [6].


Model Check Finite State Machine Symbolic Model Symbolic Model Check Model Check Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based approach for solving formulas over boolean and linear mathematical propositions. In Proc. of CADE’02, 2002.Google Scholar
  2. 2.
    S. Berezin, S. Campos, and E. M. Clarke. Compositional reasoning in model checking. In Proc. COMPOS, 1997.Google Scholar
  3. 3.
    P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a Model Based Planner. In Proc. of the IJCAI’01 Workshop on Planning under Uncertainty and Incomplete Information, Seattle, August 2001.Google Scholar
  4. 4.
    A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Proc. of the Fifth International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’99), 1999.Google Scholar
  5. 5.
    A. Borälv. A Fully Automated Approach for Proving Safety Properties in Interlocking Software Using Automatic Theorem-Proving. In S. Gnesi and D. Latella, editors, Proc. of the Second International ERCIM FMICS, Pisa, Italy, July 1997.Google Scholar
  6. 6.
    A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model checker. International Journal on Software Tools for Technology Transfer (STTT), 2(4), March 2000.Google Scholar
  7. 7.
    A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the Encoding of LTL Model Checking into SAT. In Proc. WMCAI 2002, number 2294 in LNCS, pages 182–195, 2002.Google Scholar
  8. 8.
    E. Clarke and X. Zhao. Word Level Symbolic Model Checking: A New Approach for Verifying Arithmetic Circuits. Technical Report CMU-CS-95-161, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213–3891, USA, May 1995.Google Scholar
  9. 9.
    E. M. Clarke, A. Gupta, J. Kukula, and O. Strichman. Sat based abstraction-refinement using ILP and machine learning techniques. In Proc. of Conference on Computer-Aided Verification (CAV’02), LNCS, 2002. To appear in this volume.Google Scholar
  10. 10.
    F. Copty, L. Fix, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi. Benefits of bounded model checking at an industrial setting. In Proc. of CAV 2001, LNCS, pages 436–453, 2001.Google Scholar
  11. 11.
    R. Eshuis and R. Wieringa. Verification support for workflow design with UML activity graphs. In Proc. of ICSE, 2002. To appear.Google Scholar
  12. 12.
    A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early requirements specifications in Tropos. In Proc. of the Fifth IEEE International Symposium on Requirements Engineering (RE’01), Toronto, August 2001.Google Scholar
  13. 13.
    E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating search heuristics and optimization techniques in propositional satisfiability. In Proc. of IJCAR 2001, volume 2083 of LNCS, pages 347–363. Springer, 2001.Google Scholar
  14. 14.
    The Gnu Lesser General Public License:
  15. 15.
    K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.Google Scholar
  16. 16.
    M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Efficient SAT Solver. In Proc. of the 39th Design Automation Conference, June 2001.Google Scholar
  17. 17.
    The Open Source Organization.
  18. 18.
    R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Efficient BDD algorithms for FSM synthesis and verification. In Proc. IEEE/ACM International Workshop on Logic Synthesis, Lake Tahoe (NV), May 1995.Google Scholar
  19. 19.
    O. Shtrichman. Tuning SAT checkers for bounded model-checking. In Proc. 12th International Computer Aided Verification Conference (CAV’00), 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Alessandro Cimatti
    • 1
  • Edmund Clarke
    • 2
  • Enrico Giunchiglia
    • 3
  • Fausto Giunchiglia
    • 4
  • Marco Pistore
    • 1
  • Marco Roveri
    • 1
  • Roberto Sebastiani
    • 4
  • Armando Tacchella
    • 3
  1. 1.ITC-IRSTTrentoItaly
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.DIST — Università di GenovaGenovaItaly
  4. 4.Università di TrentoTrentoItaly

Personalised recommendations