Advertisement

Phased Array Sub-beam Optimisation

  • N. J. Bracken
  • R. I. Bob McKay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2256)

Abstract

The subset of Elements used to form an independent sub beam of a Phased Array Radar Antenna can be found using a two stage Genetic Algorithm. The use of Pareto optimisation allows the determination of the minimum set of Elements to be used for the desired beam pattern. The outer GA optimises the selection of elements to be used in the sub beam, while the inner GA optimises the tuning parameters of the selected set of elements.

Keywords

Genetic Algorithm Fitness Function Pareto Front Reference Beam Beam Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Robert J. Mailloux. Phased Array Antenna Handbook. Artech House, Boston, 1993.Google Scholar
  2. [2]
    Martin A. Huisjen. Phased Array Antennas. Journal of Electronic Defense, January Supplement:51–53, 1995.Google Scholar
  3. [3]
    Diogenes Marcano and Filinto Duran. Synthesis of Antenna Arrays Using Genetic Algorithms. IEEE Antennas and Propagation Magazine, 42(3):12–19, June 2000.CrossRefGoogle Scholar
  4. [4]
    Randy L. Haupt. Genetic Algorithm Design of Antenna Arrays. In IEEE Aerospace Applications Conference Proceedings, 1:103–109, 1996.Google Scholar
  5. [5]
    Randy L. Haupt. An Introduction to Genetic Algorithms for Electromagnetics. IEEE Antennas and Propagation Magazine, 37(2):7–15, April 1995.CrossRefGoogle Scholar
  6. [6]
    J. Michael Johnson and Yahya Rahmat-Samii. Genetic Algorithms in Engineering Electromagnetics. IEEE Antennas and Propagation Magazine, 39(4):7–21, August 1997.CrossRefGoogle Scholar
  7. [7]
    R.L. Haupt. Optimum Quantised Low Sidelobe Phase Tapers for Arrays. Electronics Letters, 31(14):1117–1118, July 1995.CrossRefGoogle Scholar
  8. [8]
    Keen-Keong Yan and Yilong Lu. Sidelobe Reduction in Array-Pattern Synthesis Using Genetic Algorithm. IEEE Transactions On Antennas and Propagation, 45(7):1117–1122, July 1997.CrossRefGoogle Scholar
  9. [9]
    Masashi Shimizu. Determining the Excitation Coefficients of an Array using Genetic Algorithms. In IEEE Antennas and Propagation Society International Symposium, APS Digest, 1:530–533, 1994.Google Scholar
  10. [10]
    T.K. Wu. A Thinned Multibeam Phased Array. Microwave Journal,:114–120, November 1999.Google Scholar
  11. [11]
    Randy L. Haupt. Thinned Arrays Using Genetic Algorithms. IEEE Transactions On Antennas and Propagation, 42(7):993–999, July 1994.CrossRefGoogle Scholar
  12. [12]
    D.S. Weile and E. Michielssen. Integer Coded Pareto Genetic Algorithm Design of Constrained Antenna Arrays. Electronics Letters, 32(19):1744–1745, September 1996.CrossRefGoogle Scholar
  13. [13]
    Carlos Artemio Coello Coello, An Empirical Study of Evolutionary Techniques for Multiobjective Optimisation in Engineering Design. Department of Computer Science of the Graduate School of Tulane University Ph.D. Dissertation, 4 April 1996Google Scholar
  14. [14]
    K-H. Liang, X. Yao, and C. Newton, Evolutionary Search of Approximated N-Dimensional Landscapes. International Journal of Knowledge-Based Intelligent Engineering Systems, Vol 4 No. 3:172–183 July 2000Google Scholar
  15. [15]
    Yasuko Kimura and Kazuhiro Hirasawa. A CMA Adaptive Array with Digital Phase Shifters by a Genetic Algorithm and a Steepest Descent Method. In IEEE Antennas and Propagation Society International Symposium, 2:914–917, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • N. J. Bracken
    • 1
  • R. I. Bob McKay
    • 2
  1. 1.CEA TechnologiesFyshwickAustralia
  2. 2.University of New South Wales at ADFACampbellAustralia

Personalised recommendations