Computational Space Efficiency and Minimal Model Generation for Guarded Formulae

  • Lilia Georgieva
  • Ullrich Hustadt
  • Renate A. Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2250)


This paper describes a number of hyperresolution-based decision procedures for a subfragment of the guarded fragment. We first present a polynomial space decision procedure of optimal worst-case space and time complexity for the fragment under consideration. We then consider minimal model generation procedures which construct all and only minimal Herbrand models for guarded formulae. These procedures are based on hyperresolution, (complement) splitting and either model constraint propagation or local minimality tests. All the procedures have concrete application domains and are relevant for multi-modal and description logics that can be embedded into the considered fragment.


Modal Logic Decision Procedure Description Logic Predicate Symbol Model Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded fragments of predicate logic. J. Philos. Logic, 27(3):217–274, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Aravindan and P. Baumgartner. Theorem proving techniques for view deletion in databases. Journal of Symbolic Computation, 29(2):119–147, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with simplification as a decision procedure for the monadic class with equality. In Proc. KGC’93, vol. 713 of LNCS, pp. 83–96. Springer, 1993.Google Scholar
  4. 4.
    P. Baumgartner, P. Fröhlich, U. Furbach, and W. Nejdl. Semantically guided theorem proving for diagnosis applications. In Proc. IJCAI’97, pp. 460–465. Morgan Kaufmann, 1997.Google Scholar
  5. 5.
    P. Baumgartner, J. Horton, and B. Spencer. Merge path improvements for minimal model hyper tableaux. In Proc. TABLEAUX’99, vol. 1617 of LNAI. Springer, 1999.Google Scholar
  6. 6.
    F. Bry and A. Yahya. Positive unit hyperresolution tableaux for minimal model generation. J. Automated Reasoning, 25(1):35–82, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. de Nivelle and M. de Rijke. Deciding the guarded fragments by resolution. To appear in J. Symbolic Computat., 2001.Google Scholar
  8. 8.
    H. de Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for modal logics. Logic J. IGPL, 8(3):265–292, 2000.zbMATHCrossRefGoogle Scholar
  9. 9.
    H. Ganzinger and H. de Nivelle. A superposition decision procedure for the guarded fragment with equality. In Proc. LICS’99, pp. 295–303. IEEE Computer Society Press, 1999.Google Scholar
  10. 10.
    H. Ganzinger, C. Meyer, and M. Veanes. The two-variable guarded fragment with transitive relations. In Proc. LICS’99, pp. 24–34. IEEE Computer Society, 1999.Google Scholar
  11. 11.
    L. Georgieva, U. Hustadt, and R. A. Schmidt. Hyperresolution for guarded formulae. In Proc. of FTP’2000, pp. 101–112. Univ. Koblenz-Landau, 2000.Google Scholar
  12. 12.
    E. Grädel. On the restraining power of guards. J. Symbolic Logic, 64:1719–1742, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Grädel and I. Walukiewicz. Guarded fixed point logic. In Proc. LICS’99, pp. 45–54. IEEE Computer Society Press, 1999.Google Scholar
  14. 14.
    R. Hasegawa, H. Fujita, and M. Koshimura. Effcient minimal model generation using branching lemmas. In Proc. CADE-17, LNAI, pp. 184–199. Springer, 2000.Google Scholar
  15. 15.
    U. Hustadt and R. A. Schmidt. Using resolution for testing modal satisfiability and building models. To appear in J. Automated Reasoning, 2001.Google Scholar
  16. 16.
    A. Leitsch. Deciding clause classes by semantic clash resolution. Fundamenta Informatica, 18:163–182, 1993.zbMATHMathSciNetGoogle Scholar
  17. 17.
    R. Letz and G. Stenz. Model elimination and connection tableau procedures. In A. Robinson and A. Voronkov, eds., Handbook of Automated Reasoning, pp. 2017–2116. Elsevier, 2001.Google Scholar
  18. 18.
    C. Lutz, U. Sattler, and S. Tobies. A suggestion of an n-ary description logic. In Proc. DL’99, pp. 81–85. Linköping University, 1999.Google Scholar
  19. 19.
    J.-J. Ch. Meyer, W. van der Hoek, and B. van Linder. A logical approach to the dynamics of commitments. Artificial Intelligence, 113(1–2):1–40, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    I. Niemelä. A tableau calculus for minimal model reasoning. In Proc. TABLEAUX⊃6, vol. 1071 of LNAI, pp. 278–294. Springer, 1996.Google Scholar
  21. 21.
    M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements. J. Artificial Intelligence, 48:1–26, 1991.zbMATHCrossRefGoogle Scholar
  22. 22.
    C. Weidenbach. Spass: Combining superposition, sorts and splitting. In A. Robinson and A. Voronkov, eds., Handbook of Automated Reasoning, pp. 1967–2015. Elsevier, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Lilia Georgieva
    • 1
  • Ullrich Hustadt
    • 2
  • Renate A. Schmidt
    • 1
  1. 1.Department of Computer ScienceUniversity of ManchesterManchesterUK
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations