Advertisement

Maintaining Dynamic Minimum Spanning Trees: An Experimental Study

  • Giuseppe Cattaneo
  • Pompeo Faruolo
  • Umberto Ferraro Petrillo
  • Giuseppe F. Italiano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2409)

Abstract

We report our findings on an extensive empirical study on several algorithms for maintaining minimum spanning trees in dynamic graphs. In particular, we have implemented and tested a variant of the polylogarithmic algorithm by Holm et al., sparsification on top of Frederickson’s algorithm, and compared them to other (less sophisticated) dynamic algorithms. In our experiments, we considered as test sets several random, semi-random and worst-case inputs previously considered in the literature.

Keywords

Random Graph Minimum Span Tree Dynamic Algorithm Dynamic Graph Dynamic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Alberts, G. Cattaneo, G. F. Italiano, “An empirical study of dynamic graph algorithms”, ACM Journal on Experimental Algorithmics, vol. 2 (1997).Google Scholar
  2. 2.
    D. Alberts, G. Cattaneo, G. F. Italiano, U. Nanni, C. D. Zaroliagis “A Software Library of Dynamic Graph Algorithms”. Proc. Algorithms and Experiments (ALEX 98), Trento, Italy, February 9–11, 1998, R. Battiti and A. A. Bertossi (Eds), pp. 129–136.Google Scholar
  3. 3.
    D. Alberts, M. R. Henzinger, “Average Case Analysis of Dynamic Graph Algorithms”, Proc. 6th Symp. on Discrete Algorithms (1995), 312–321.Google Scholar
  4. 4.
    C.R. Aragon, R. Seidel, “Randomized search trees”, Proc. 30th Annual Symp. on Foundations of Computer Science (FOCS 89), 1989, pp. 540–545.Google Scholar
  5. 5.
    G. Amato, G. Cattaneo, G. F. Italiano, “Experimental Analysis of Dynamic Minimum Spanning Tree Algorithms”, Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, (1997), 5–7.Google Scholar
  6. 6.
    B. Bollobás. Random Graphs. Academic Press, London, 1985.zbMATHGoogle Scholar
  7. 7.
    T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. Mac-Graw Hill, NY, 1990.Google Scholar
  8. 8.
    C. Demetrescu, D. Frigioni, A. Marchetti-Spaccamela, U. Nanni. “Maintaining Shortest Paths in Digraphs with Arbitrary Arc Weights: An Experimental Study.” Procs. 3rd Workshop on Algorithm Engineering (WAE2000). Lecture Notes in Computer Science, Springer-Verlag, 2001.Google Scholar
  9. 9.
    C. Demetrescu and G.F. Italiano. Fully dynamic transitive closure: Breaking through the O(n2) barrier. Proc. of the 41st IEEE Annual Symposium on Foundations of Computer Science (FOCS’00), pages 381–389, 2000.Google Scholar
  10. 10.
    C. Demetrescu, G. F. Italiano, “Fully Dynamic All Pairs Shortest Paths with Real Edge Weights”. Proc. 42nd IEEE Annual Symp. on Foundations of Computer Science (FOCS 2001), Las Vegas, NV, U.S.A., October 14–17, 2001.Google Scholar
  11. 11.
    D. Eppstein, Z. Galil, G. F. Italiano and A. Nissenzweig, “Sparsification — A technique for speeding up dynamic graph algorithms.”. In Journal of ACM, Vol. 44, 1997, pp. 669–696.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    D. Eppstein, Z. Galil, G. F. Italiano, T. H. Spencer, “Separator based sparsification for dynamic planar graph algorithms”, Proc. 25th ACM Symposium on Theory of Computing (1993), 208–217.Google Scholar
  13. 13.
    D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung, Maintenance of a minimum spanning forest in a dynamic plane graph, J. Algorithms, 13:33–54, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    G.N. Frederickson, “Data structures for on-line updating of minimum spanning trees, with applications”, SIAM J. Comput. 14 (1985), 781–798.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    G.N. Frederickson, “Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees”, Proc. 32nd IEEE Symp. Foundations of Computer Science (1991), 632–641.Google Scholar
  16. 16.
    D. Frigioni, M. Ioffreda, U. Nanni, G. Pasqualone. “Experimental Analysis of Dynamic Algorithms for the Single Source Shortest Path Problem.” ACM Journal on Experimental Algorithmics, vol. 3 (1998), Article 5.Google Scholar
  17. 17.
    D. Frigioni, T. Miller, U. Nanni, G. Pasqualone, G. Schaefer, and C. Zaroliagis “An experimental study of dynamic algorithms for directed graphs”, in Proc. 6th European Symp. on Algorithms, Lecture Notes in Computer Science 1461 (Springer-Verlag, 1998), pp. 368–380.Google Scholar
  18. 18.
    M. R. Henzinger and V. King, Randomized dynamic graph algorithms with polylogarithmic time per operation, Proc. 27th Symp. on Theory of Computing, 1995, 519–527.Google Scholar
  19. 19.
    M. R. Henzinger and V. King, Fully dynamic biconnectivity and transitive closure, Proc. 36th IEEE Symp. Foundations of Computer Science, pages 664–672, 1995.Google Scholar
  20. 20.
    M. R. Henzinger and V. King, Maintainig minimum spanning trees in dynamic graphs, Proc. 24th Int. Coll. Automata, Languages and Programming (ICALP 97), pages 594–604, 1997.Google Scholar
  21. 21.
    J. Holm, K. de Lichtenberg, and M. Thorup, Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Proc. 30th Symp. on Theory of Computing (1998), pp. 79–89.Google Scholar
  22. 22.
    R. Iyer, D. R. Karger, H. S. Rahul, and M. Thorup, An Experimental Study of Poly-Logarithmic Fully-Dynamic Connectivity Algorithms, Proc. Workshop on Algorithm Engineering and Experimentation, 2000.Google Scholar
  23. 23.
    V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS’99), 1999.Google Scholar
  24. 24.
    V. King and G. Sagert. A fully dynamic algorithm for maintaining the transitive closure. Proc. 31st ACM Symposium on Theory of Computing (STOC’99), pages 492–498, 1999.Google Scholar
  25. 25.
    J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc. 7, (1956), 48–50.CrossRefMathSciNetGoogle Scholar
  26. 26.
    K. Melhorn and S. Näher, “LEDA, A platform for combinatorial and geometric computing”. Comm. ACM, (1995), 38(1): pp. 96–102.CrossRefGoogle Scholar
  27. 27.
    M. Rauch, “Improved data structures for fully dynamic biconnectivity”, Proc. 26th Symp. on Theory of Computing (1994), 686–695.Google Scholar
  28. 28.
    D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comp. Syst. Sci., 24:362–381, 1983.CrossRefMathSciNetGoogle Scholar
  29. 29.
    R. E. Tarjan and J. van Leeuwen, Worst-case analysis of set union algorithms, J. Assoc. Comput. Mach., 31:245–281, 1984.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Giuseppe Cattaneo
    • 1
  • Pompeo Faruolo
    • 1
  • Umberto Ferraro Petrillo
    • 1
  • Giuseppe F. Italiano
    • 2
  1. 1.Dipartimento di Informatica e ApplicazioniUniversità di SalernoSalernoItaly
  2. 2.Dipartimento di Informatica, Sistemi e ProduzioneUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations