Soft-Biometrics: Soft-Computing Technologies for Biometric-Applications

  • Katrin Franke
  • Javier Ruiz-del-Solar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2275)


Biometrics, the computer-based validation of persons’ identity, is becoming more and more essential due to the increasing demand for high-security systems. A biometric system testifies the authenticity of a specific physiological or behavioral characteristic possessed by a user. New requirements over actual biometric systems as robustness, higher recognition rates, tolerance for imprecision and uncertainty, and flexibility call for the use of new computing technologies. In this context soft-computing is increasingly being used in the development of biometric applications. Soft-Biometrics correspond to a new emerging paradigm that consists in the use of soft-computing technologies for the development of biometric applications. The aim of this paper is to motivate discussions on application of soft-computing approaches in specific biometric measurements. The feasibility of soft-computing as a tool-set for biometric applications should be investigated.


Smart Card Numerical Parameter Biometric System Result Fusion False Rejection Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elsevier Advanced Technology: Biometrics technology today (01/1997-02/2000)Google Scholar
  2. 2.
    Newham, E., Bunney, C., C. Mearns: Biometrics report (1999)Google Scholar
  3. 3.
    Tele Trust— AG 6: Biometrische Identifikation— Bewertungskriterien zur Vergleichbarkeit biometrischer Verfahren (1998)Google Scholar
  4. 4.
    Schneider, J., Franke, K., Nickolay, B.: Konzeptstudie — Biometrische Authentifikation. Technical report, Fraunhofer IPK Berlin (2000)Google Scholar
  5. 5.
    Leclerc, F., Plamondon, R.: Automatic signature verification: the state of the art-1989-1993. International Journal of Pattern Recognition and Artificial Intelligence 8 (1994) 643–660CrossRefGoogle Scholar
  6. 6.
    Yang, X., Furuhashi, T., Obata, K., Uchikawa, Y.: Constructing a high performance signature verification system using a GA method. In: Proceedings 2nd New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, Dunedin, New Zealand (1995) 170–173Google Scholar
  7. 7.
    Franke, K., Köppen, M., Nickolay, B., Unger, S.: Machbarkeits-und Konzeptstudie Automaisches System zur Unterschriftenverifikation. Technical report, Fraunhofer IPK Berlin (1996)Google Scholar
  8. 8.
    Franke, K., Köppen, M.: A computer-based system to support forensic studies on handwritten documents. International Journal on Document Analysis and Recognition 3 (2001) 218–231CrossRefGoogle Scholar
  9. 9.
    Franke, K., Köppen, M.: Towards an universal approach to background removal in images of bankchecks. In: Proceedings 6th International Workshop on Frontiers in Handwriting Recognition (IWFHR), Tajon, Korea (1998)Google Scholar
  10. 10.
    Kosko, B.: Fuzzy Engineering. Prentice Hall Internationall, Inc. (1997)Google Scholar
  11. 11.
    Franke, K., Zhang, Y.N., Köppen, M.: (Static signature verification employing a kosko-neuro-fuzzy approach) submitted to the International Conference on Fuzzy Systems (AFSS) 2002.Google Scholar
  12. 12.
    Grabisch, M., Nicolas, J.M.: Classification by fuzzy integral: Performance and tests. Fuzzy Sets and Systems 65 (1994) 255–271CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Katrin Franke
    • 1
  • Javier Ruiz-del-Solar
    • 2
  1. 1.Dept. of Pattern RecognitionFraunhofer IPKBerlinGermany
  2. 2.Dept. of Electrical EngeneeringUniversidad de ChileSantigoChile

Personalised recommendations