Disjunctive Logic Programming: A Survey and Assessment

  • Jack Minker
  • Dietmar Seipel
Chapter

Abstract

We describe the fields of disjunctive logic programming and disjunctive deductive databases from the time of their inception to the current time. Contributions with respect to semantics, implementations and applications are surveyed.

In the last decade many semantics have been proposed out of which we highlight what we believe to be the most influential ones and compare them. Basic ideas have been borrowed from the semantics of normal logic programs such as stable model semantics and well-founded semantics, which have been generalized in various ways to obtain semantics of disjunctive logic programs.

We discuss disjunctive systems such as DLV and Smodels, and related non-disjunctive systems such as XSB and DeReS, that have been implemented. We also describe applications of disjunctive logic programming: reasoning about declarative specifications, reasoning about actions, diagnosis (e.g. in medicine or biology), and in data integration that have resource predicates defined by multiple rules. We discuss the future needs to make the field practical: e.g. integrating concepts from databases (such as aggregation), optimization methods, and object orientation.

In Section 12 we discuss the influence that Bob Kowalski had on our work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB90]
    K.R. Apt and H.A. Blair. Arithmetic classification of perfect models of stratified programs. Fundamenta Informaticae, XIII: pp. 1–18, 1990. With addendum in vol. XIV: pp. 339–343. 1991.MathSciNetGoogle Scholar
  2. [AB94]
    K.R. Apt and R.N. Bol. Logic programming and negation: a survey. Journal of Logic Programming, 19/20: pp. 9–71, 1994.CrossRefMathSciNetGoogle Scholar
  3. [ABW88]
    K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. In [Min88b], pp. 89–148. 1988.Google Scholar
  4. [ADN97b]
    C. Aravindan, J. Dix, and I. Niemelä. DisLoP: Towards a Disjunctive Logic Programming System. Proc. LPNMR’97, Springer, LNAI 1265, pp. 342–353, 1997.Google Scholar
  5. [AN78]
    H. Andreka and I. Nemeti. The generalized completeness of Horn predicate logic as a programming language. Acta Cybernetica, 4(1): pp. 3–10, 1978.MATHMathSciNetGoogle Scholar
  6. [APP98]
    J.J. Alferes, L.M. Pereira, and T.C. Przymusinski. ‘Classical’ negation in nonmonotonic reasoning and logic programming. Journal of Automated Reasoning, 20, pp. 107–142, 1998.MATHCrossRefMathSciNetGoogle Scholar
  7. [Apt90]
    K.R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pp. 493–574. Elsevier, 1990.Google Scholar
  8. [AvE82]
    K.R. Apt and M.H. van Emden. Contributions to the theory of logic programming. Journal of the ACM, 29(3): pp. 841–862, 1982.MATHCrossRefGoogle Scholar
  9. [BD95a]
    S. Brass and J. Dix. A general approach to bottom-up computation of disjunctive semantics. In Nonmonotonic Extensions of Logic Programming. Springer, LNCS 927, pp. 127–155, 1995.CrossRefGoogle Scholar
  10. [BD95b]
    S. Brass and J. Dix. Disjunctive semantics based upon partial and bottom-up evaluation. Proc. ICLP’95, pp. 199–213. MIT Press, 1995.Google Scholar
  11. [BD97]
    S. Brass and J. Dix. Characterizations of the disjunctive Stable semantics by partial evaluation. J. of Logic Programming, 32(3): pp. 207–228, 1997.MATHCrossRefMathSciNetGoogle Scholar
  12. [BD98]
    S. Brass and J. Dix. Characterizations of the disjunctive well-founded semantics: confluent calculi and iterated GCWA. Journal of Automated Reasoning, 20(1): pp. 143–165, 1998.MATHCrossRefMathSciNetGoogle Scholar
  13. [BD99]
    S. Brass and J. Dix. Semantics of (disjunctive) logic programs based on partial evaluation. J. of Logic Prog., 38(3): pp. 167–213, 1999.Google Scholar
  14. [BDNP01]
    S. Brass, J. Dix, I. Niemelae, and T.C. Przymusinski: Comparison of the STATIC and the disjunctive well-founded semantics and their computation. Theoretical Computer Science, 251, 2001.Google Scholar
  15. [BDFZ01]
    S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up computation of the well-founded model. Theory and Practice of Logic Programming, 1(5), pp. 497–538, 2001.MATHCrossRefMathSciNetGoogle Scholar
  16. [BDNP98]
    S. Brass, J. Dix, I. Niemelae, and T.C. Przymusinski: A Comparison of the static and the disjunctive well-founded semantics and its implementation. Proc. KR’98, pp. 74–85. Morgan Kaufmann, 1998.Google Scholar
  17. [BDP96]
    S. Brass, J. Dix, and T.C. Przymusinski: Super logic programs. Proc. KR’96, pp. 529–541. Morgan Kaufmann, 1996.Google Scholar
  18. [BE96]
    P.A. Bonatti and T. Eiter. Querying disjunctive databases through nonmonotonic logics. Theoretical Computer Science, 160: pp. 321–363, 1996.MATHCrossRefMathSciNetGoogle Scholar
  19. [BE98]
    G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Journal of Artificial Intelligence 109(1–2): pp. 297–356, 1999.MATHCrossRefMathSciNetGoogle Scholar
  20. [BED94]
    R. Ben-Eliyahu and R. Dichter. Propositional semantics for disjunctive logic programs. AMAI 12: pp. 53–87, 1994.MATHGoogle Scholar
  21. [BEP94]
    R. Ben-Eliyahu and L. Palopoli. Reasoning with minimal models: efficient algorithms and applications. Proc. KR’94, pp. 39–50, 1994.Google Scholar
  22. [BEPZ96]
    R. Ben-Eliyahu, L. Palopoli, and V. Zemlyanker. The expressive power of tractable disjunction. In Proc. of the 12th European Conference on Artificial Intelligence (ECAI’96), pp. 345–349, 1996.Google Scholar
  23. [BFL99]
    F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheritance. Proc. ICLP’99, pp. 79–93, 1999.Google Scholar
  24. [BG94]
    C. Baral and M. Gelfond. Logic programming and knowledge representation. Journal of Logic Programming, 19/20: pp. 73–148, 1994.CrossRefMathSciNetGoogle Scholar
  25. [BLR97]
    F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive datalog. Proc. LPNMR’97. Springer, LNAI 265, pp. 2–17, 1997.Google Scholar
  26. [BNNS94]
    C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Mixed integer programming methods for computing nonmonotonic deductive databases. Journal of the ACM, 41(6): pp. 1178–1215, 1994.MATHCrossRefMathSciNetGoogle Scholar
  27. [Bry90]
    F. Bry. Query evaluation in deductive databases: bottom-up and top-down reconciled. Journal of Data & Knowledge Engineering, 5(4): pp. 289–312, 1990.CrossRefGoogle Scholar
  28. [Cad92]
    M. Cadoli. The complexity for model checking for circumscriptive formulae. Information Processing Letters, 44: pp. 113–118, 1992.MATHCrossRefMathSciNetGoogle Scholar
  29. [Cad93]
    M. Cadoli. Semantical and computational aspects of Horn approximations. Proc. IJCAI’93, pp. 39–44, 1993.Google Scholar
  30. [Cad96]
    M. Cadoli. Panel on “Knowledge compilation and approximation”: terminology, questions, references. In Proc. of the 4th Int. Symp. on Artificial Intelligence and Math. (AI/Math’96), pp. 183–186, 1996.Google Scholar
  31. [CH82]
    A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer System Sci., 25: pp. 99–128, 1982.MATHCrossRefGoogle Scholar
  32. [CH85]
    A. Chandra and D. Harel. Horn clause queries and generalizations. J. of Logic Programming, 2(1): pp. 1–15, 1985.CrossRefMathSciNetMATHGoogle Scholar
  33. [Cha93]
    E. Chan. A possible world semantics for disjunctive databases. IEEE Trans. Data and Knowledge Eng., 5(2): pp. 282–292, 1993.CrossRefGoogle Scholar
  34. [CL94]
    M. Cadoli and M. Lenzerini. The complexity of closed world reasoning and circumscription. J. of Computer System Sciences, 43: pp. 165–211, 1994.MathSciNetGoogle Scholar
  35. [Cla78]
    K. L. Clark. Negation as failure. In J. Minker, editors, Logic and Data Bases, Plenum Press, New York [GMN78], pp. 293–322. 1978.Google Scholar
  36. [CMT99]
    P. Cholewiński, A. Marek, V. W. Mikitiuk, and M. Truszczyński. Computing with default logic. J. of Art. Intelli., 112(1–2): pp. 105–146, 1999.CrossRefMATHGoogle Scholar
  37. [Cod79]
    E.F. Codd. Extending the database relational model to capture more meaning. ACM Transactions on Database Systems, 4(4): pp. 397–434, 1979.CrossRefGoogle Scholar
  38. [CS90]
    J. Chomicki and V.S. Subrahmanian. Generalized closed world assumption is π2 0-complete. Inf. Processing Letters, 34: pp. 289–291, 1990.MATHCrossRefMathSciNetGoogle Scholar
  39. [CS93]
    M. Cadoli and M. Schaerf. A survey of complexity results for nonmonotonic logics. Journal of Logic Programming, 13: pp. 127–160, 1993.CrossRefMathSciNetGoogle Scholar
  40. [CW93]
    W. Chen and D.S. Warren. A goal-oriented approach to computing the well-founded semantics. J. of Logic Progr., 17(2–4): pp. 279–300, 1993.MATHCrossRefMathSciNetGoogle Scholar
  41. [Dec91]
    H. Decker. On the declarative, operational and procedural semantics of disjunctive computational theories. In Proc. of the Second Intl. Workshop on the Deductive Approach to Inf. Syst. and Databases (DAISD’91), 1991.Google Scholar
  42. [DEGV97]
    E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic programming. In Proc. of the 12th IEEE International Conference on Computational Complexity (CCC’97), pp. 82–101, 1997.Google Scholar
  43. [DFN99]
    J. Dix, U. Furbach, and I. Niemelä. Nonmonotonic reasoning: towards efficient calculi and implementations. In A. Voronkov and A. Robinson, editors, Handbook of Automated Reasoning. Elsevier-Science-Press, 1999.Google Scholar
  44. [DG84]
    W.F. Dowling and J.H. Gallier. Linear time algorithms for testing the satisfiability of propositional Horn formulae. Journal of Logic Programming, 1: pp. 267–284, 1984.CrossRefMathSciNetMATHGoogle Scholar
  45. [DGM96]
    J. Dix, G. Gottlob, and V. Marek. Reducing disjunctive to nondisjunctive semantics by shift operations. Fundamenta Informaticae, 28(1,2): pp. 87–100, 1996.MATHMathSciNetGoogle Scholar
  46. [Dix92a]
    J. Dix. A framework for representing and characterizing semantics of logic programs. Proc. KR’92, pp. 591–602. Morgan Kaufmann, 1992.Google Scholar
  47. [Dix95]
    J. Dix. A classification-theory of semantics of normal logic programs: I. Strong properties and II. Weak properties. Fund. Informaticae, XXII(3): pp. 227–255 and 257–288, 1995.MathSciNetGoogle Scholar
  48. [Dix95d]
    J. Dix. Semantics of logic programs: their intuitions and formal properties. An overview. In A. Fuhrmann and H. Rott, editors, Logic, Action and Information-Essays on Logic in Philosophy and Artificial Intelligence, DeGruyter, pp. 241–327. 1995.Google Scholar
  49. [DS98]
    J. Dix and F. Stolzenburg. A framework to incorporate nonmonotonic reasoning into constraint logic programming. Journal of Logic Programming, 37(1,2,3): pp. 47–76, 1998.MATHCrossRefMathSciNetGoogle Scholar
  50. [deVa95]
    A. del Val. An analysis of approximate knowledge compilation. Proc. IJCAI’95, 1995.Google Scholar
  51. [EFLP00]
    T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem solving using the DLV system. In J. Minker, editor, Book on Logic-Based Artificial Intelligence, Kluwer, 2000.Google Scholar
  52. [EFLPP00]
    T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under incomplete knowledge. in Proc. of the First International Conference on Computational Logic (CL’2000), Springer, LNAI1861, pp. 807–821, 2000.Google Scholar
  53. [EG93a]
    T. Eiter and G. Gottlob. Complexity aspects of various semantics for disjunctive databases. Proc. PODS’93, pp. 158–167. ACM Press, 1993.Google Scholar
  54. [EG95]
    T. Eiter and G. Gottlob. On the computation cost of disjunctive logic programming: Propositional case. AMAI 15(3–4): pp. 289–323, 1995.MATHMathSciNetGoogle Scholar
  55. [EG97]
    T. Eiter and G. Gottlob. Expressiveness of stable model semantics for disjunctive logic programs with functions. Journal of Logic Programming, 33(2): pp. 167–178, 1997.MATHCrossRefMathSciNetGoogle Scholar
  56. [EGM94]
    T. Eiter, G. Gottlob, and H. Mannila. Adding disjunction to Datalog. Proc. PODS’94, pp. 267–278, 1994.Google Scholar
  57. [EK89]
    K. Eshghi, R.A. Kowalski. Abduction compared with Negation by Failure. Proc. ICLP’89, pp. 234–254. MIT Press, 1989.Google Scholar
  58. [ELM+98]
    T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The kr system DLV: Progress report, comparisons, and benchmarks. Proc. KR’98, pp. 406–417, 1998.Google Scholar
  59. [ELS97]
    T. Eiter, N. Leone, and D. Saccà. On the partial semantics for disjunctive deductive databases. AMAI 19(1–2): pp. 59–96, 1997.MATHGoogle Scholar
  60. [ELS98]
    T. Eiter, N. Leone, and D. Saccà. Expressive power and complexity of partial models for disjunctive deductive databases. Theoretical Computer Science, 206(1–2): pp. 181–218, 1998.MATHCrossRefMathSciNetGoogle Scholar
  61. [FGM96]
    J.A. Fernández, J. Grant, and J. Minker. Model theoretic approach to view updates in deductive databases. Journal of Automated Reasoning, 17(2): pp. 171–197, 1996.MATHCrossRefMathSciNetGoogle Scholar
  62. [Fit85]
    M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming, 2: pp. 295–312, 1985.CrossRefMathSciNetMATHGoogle Scholar
  63. [Fi91]
    M. Fitting. Bilattices and the semantics of logic programs, Journal of Logic Programming, 11: pp. 91–116, 1991.MATHCrossRefMathSciNetGoogle Scholar
  64. [FLMS93]
    J.A. Fernández, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctive LP + integrity constraints = stable model semantics. AMAI 8(3–4): pp. 449–474, 1993.MATHGoogle Scholar
  65. [FLP99]
    W. Faber, N. Leone, and G. Pfeifer. Pushing goal derivation in DLP computations. Proc. LPNMR’97, Springer, LNAI1265, pp. 177–191, 1997.Google Scholar
  66. [FM91a]
    J.A. Fernández and J. Minker. Computing perfect models of disjunctive stratified databases. In ILPS’91 Workshop on Disjunctive Logic Programming, 1991.Google Scholar
  67. [FM91b]
    J.A. Fernández, J. Minker. Bottom-up evaluation of hierarchical disjunctive deductive databases. Proc. ICLP’91, pp. 660–675. MIT Press, 1991.Google Scholar
  68. [FM92]
    J.A. Fernández and J. Minker. Semantics of disjunctive deductive databases. In Proc. of the International Conference on Database Theory (ICDT’92), pp. 332–356, 1992. (Invited Paper).Google Scholar
  69. [FM95]
    J.A. Fernández and J. Minker. Bottom-up computation of perfect models for disjunctive theories. J. of Logic Programming, 25(1): pp. 33–51, 1995.MATHCrossRefGoogle Scholar
  70. [GMN78]
    H. Gallaire and J. Minker, editors, Logic and Data Bases, Plenum Press, New York, 1978.MATHGoogle Scholar
  71. [GHLM93]
    J. Grant, J. Horty, J. Lobo, and J. Minker. View updates in stratified disjunctive databases. J. Automated Reasoning, 11: pp. 249–267, 1993.MATHCrossRefMathSciNetGoogle Scholar
  72. [Gin87]
    M.L. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan Kaufmann, 1987.Google Scholar
  73. [GL88]
    M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. of the 5th Intl. Conf. and Symp. on Logic Programming, pp. 1070–1080, MIT Press, 1988.Google Scholar
  74. [GL90]
    M. Gelfond and V. Lifschitz. Logic programs with classical negation. Proc. ICLP’90, pp. 579–597, MIT Press, 1990.Google Scholar
  75. [GL91]
    M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9: pp. 365–385, 1991.Google Scholar
  76. [GM86]
    J. Grant and J. Minker. Answering queries in indefinite databases and the null value problem. In P. Kanellakis, editor, Advances in Computing Research: The Theory of Databases, pp. 247–267. 1986.Google Scholar
  77. [GM00]
    J. Grant and J. Minker. A logic-based approach to data integration. 2000. Submitted for publication.Google Scholar
  78. [GPP86]
    M. Gelfond, H. Przymusinska, and T.C. Przymusinski. The extended closed world assumption and its relation to parallel circumscription. Proc. PODS’86, pp. 133–139, 1986.Google Scholar
  79. [Gre98]
    S. Greco. Binding propagation in disjunctive databases. In Proc. of the Intl. Conf. on Very Large Databases (VLDB’98), pp. 287–298, 1998.Google Scholar
  80. [Gre99]
    S. Greco. Optimization of disjunctive queries. Proc. ICLP’99, pp. 441–455, 1999.Google Scholar
  81. [Gre99b]
    S. Greco. Minimal founded semantics for disjunctive logic programming. Proc. LPNMR’99, Springer, LNAI 1730, pp. 221–235, 1999.Google Scholar
  82. [HeWa97]
    H. Herre and G. Wagner. Stable models are generated by a stable chain. Journal of Logic Programming, 30(2): pp. 165–177, 1997.MATHCrossRefMathSciNetGoogle Scholar
  83. [Hil74]
    R. Hill. Lush resolution and its completeness. Technical Report DCL Memo 78, Department of Artificial Intelligence, Univ. of Edinburgh, 1974.Google Scholar
  84. [HIOK97]
    R. Hasegawa, K. Inoue, Y. Ohta, and M. Koshimura. Non-Horn magic sets to incorporate top-down inference into bottom-up theorem proving. Proc. CADE’97, pp. 176–190, 1997.Google Scholar
  85. [IM82]
    A. Itai and J.A. Makowsky. On the complexity of Herbrand’s theorem. Technical report, Dept. of Computer Science, Israel Institute of Technology, Haifa, 1982.Google Scholar
  86. [Imi91]
    T. Imielinski. Incomplete deductive databases. AMAI 3: pp. 259–293, 1991.MATHMathSciNetGoogle Scholar
  87. [IS93]
    K. Inoue and C. Sakama. Transforming abductive logic programs to disjunctive programs. Proc. ICLP’93, pp. 335–353, 1993.Google Scholar
  88. [IV89]
    T. Imielinski and K. Vadaparty. Complexity of query processing in databases with OR-objects. Proc. PODS’89, pp. 51–65, 1989.Google Scholar
  89. [JLL83]
    J. Jaffar, J.-L. Lassez, and J.W. Lloyd. Completeness of the Negation as Failure rule. Proc. IJCAI’83, pp. 500–506, 1983.Google Scholar
  90. [JNSY00]
    T. Janhunen, I. Niemelä, P. Simons, and J.-H. You: Unfolding partiality and disjunctions in stable model semantics. Proc. KR’2000, Morgan Kaufmann, 2000.Google Scholar
  91. [KLM90]
    S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Journal of Artificial Intelligence, 44(1): pp. 167–207, 1990.CrossRefMathSciNetMATHGoogle Scholar
  92. [KLW95]
    M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages. J. of the ACM, 42(4), pp. 741–843, 1995.MATHCrossRefMathSciNetGoogle Scholar
  93. [Kow74]
    R. A. Kowalski. Predicate logic as a programming language. Proc. of IFIP 4, pp. 569–574, 1974.Google Scholar
  94. [Kow78]
    R.A. Kowalski. Logic for data description. In J. Minker, editors, Logic and Data Bases, Plenum Press, New York [GMN78], pp. 77–102. 1978.Google Scholar
  95. [Kow88]
    R.A. Kowalski. The early years of logic programming. Communications of the ACM, 31(1): pp. 38–43, 1988.CrossRefGoogle Scholar
  96. [KP91]
    P. Kolaitis and C. Papadimitriou. Why not negation by fixpoint? Journal of Computer and System Sciences, 43: pp. 125, 1991.MATHCrossRefMathSciNetGoogle Scholar
  97. [KS92]
    H.A. Kautz and B. Selman. Forming concepts for fast inference. Proc. AAAI’92, pp. 786–793, 1992.Google Scholar
  98. [Lip81]
    W. Lipski. On databases with incomplete information. volume 28, pp. 41–70. ACM, New York, 1981.Google Scholar
  99. [Llo87]
    J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd ed., 1987.Google Scholar
  100. [LM84]
    J.-L. Lassez and M.J. Maher. Closure and fairness in the semantics of programming logic. Theoretical Computer Science, 29: pp. 167–184, 1984.CrossRefMathSciNetGoogle Scholar
  101. [LMR92]
    J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MIT Press, 1992.Google Scholar
  102. [Lov87]
    D.W. Loveland. Near-Horn Prolog. Proc. ICLP’87, pp. 456–459, 1987.Google Scholar
  103. [LRS95]
    N. Leone, P. Rullo, F. Scarcello. Declarative and fixpoint characterizations of disjunctive stable models. Proc. ILPS’95, pp. 399–413. MIT Press, 1995.Google Scholar
  104. [LRS96]
    N. Leone, P. Rullo, and F. Scarcello. Stable model checking for disjunctive programs. In Prof. of Logic in Databases (LID’96), pp. 281–294, 1996.Google Scholar
  105. [LRS97]
    N. Leone, P. Rullo, and F. Scarcello. Disjunctive stable models: Unfounded sets, fixpoint semantics and computation. Information and Computation, 135: pp. 69–112, 1997.MATHCrossRefMathSciNetGoogle Scholar
  106. [LRW93]
    D. Loveland, D. Reed, and D. Wilson. Satchmore: Satchmo with relevancy. Technical report, Duke Univ., Durham, North Carolina, USA, 1993.Google Scholar
  107. [LS90b]
    K.-C. Liu and R. Sunderraman. On representing indefinite and maybe information in relational databases: A generalization. Proc. of IEEE Data Engineering, pp. 495–502, 1990.Google Scholar
  108. [MB88]
    R. Manthey and F. Bry. Satchmo: A theorem prover implemented in Prolog. Proc. CADE’88, 1988.Google Scholar
  109. [McCa59]
    J. McCarthy. Programs with common sense. In Proc. Teddington Conf. on the Mechanisation of Thought Processes, pp. 75–91, London, 1959. Her Majesty’s Stationery Office.Google Scholar
  110. [McCa80]
    J. McCarthy. Circumscription-a form of non-monotonic reasoning. Journal of Artificial Intelligence, 13(1,2): pp. 27–39, 1980.MATHCrossRefMathSciNetGoogle Scholar
  111. [MD80]
    D. McDermott and J. Doyle. Non-monotonic logic I. Journal of Artificial Intelligence, 13: pp. 41–72, 1980.MATHCrossRefMathSciNetGoogle Scholar
  112. [Min82]
    J. Minker. On indefinite databases and the closed world assumption. Proc. CADE’82, Also in: Springer, LNCS 138, pp. 292–308, 1982.Google Scholar
  113. [Min88a]
    J. Minker. Perspectives in deductive databases. Journal of Logic Programming, 5: pp. 33–60, 1988.CrossRefMathSciNetGoogle Scholar
  114. [Min88b]
    J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, 1988.Google Scholar
  115. [Min89]
    J. Minker. Toward a foundation of disjunctive logic programming. In Proc. of the North American Conference on Logic Programming, pp. 121–125. MIT Press, 1989. Invited Banquet Address.Google Scholar
  116. [Min93]
    J. Minker. An overview of nonmonotonic reasoning and logic programming. Journal of Logic Programming, 17(2, 3 and 4): pp. 95–126, 1993.MATHCrossRefMathSciNetGoogle Scholar
  117. [Min94]
    J. Minker. Overview of disjunctive logic programming. Journal of Artificial Intelligence & Mathematics, 12(1–2): pp. 1–24, 1994.CrossRefMathSciNetGoogle Scholar
  118. [Min99]
    J. Minker. Logic and databases: a 20 year retrospective-updated in honor of Ray Reiter. In H. J. Levesque and F. Pirri, editors, Logical Foundations for Cognitive Agents: Contributions in Honor of Ray Reiter, pp. 234–299. Springer, 1999.Google Scholar
  119. [MNR92]
    V.W. Marek, A. Nerode, and J.B. Remmel. The stable models of a predicate logic program. In Proc. of the Joint Intl. Conf. and Symposium on Logic Programming (JICSLP’92), pp. 446–460, MIT Press, 1992.Google Scholar
  120. [Moo84]
    R.C. Moore. Possible-world semantics for autoepistemic logic. In Proc. of AAAI Workshop on Non-Mon. Reasoning, pp. 396–401, New Paltz, 1984.Google Scholar
  121. [Moo85]
    R.C. Moore. Semantical considerations on nonmonotonic logic. Journal of Artificial Intelligence, 25(1): pp. 75–94, 1985.MATHCrossRefGoogle Scholar
  122. [MR90]
    J. Minker and A. Rajasekar. A fixpoint semantics for disjunctive logic programs. Journal of Logic Programming, 9(1): pp. 45–74, 1990.CrossRefMathSciNetMATHGoogle Scholar
  123. [MR94]
    J. Minker and C. Ruiz. Semantics for disjunctive logic programs with explicit and default negation. Fundamenta Informaticae, 20(3/4): pp. 145–192, 1994. Anniversary Issue edited by H. Rasiowa.Google Scholar
  124. [MT91]
    V.W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM, 38(3): pp. 588–619, 1991.MATHCrossRefGoogle Scholar
  125. [MT93]
    V.W. Marek and M. Truszczyński. Nonmonotonic logic: Context-dependent reasoning. Springer, 1993.Google Scholar
  126. [NS97]
    I. Niemela and P. Simons. Smodels-an implementation of the stable model and well-founded semantics for normal logic programs. Proc. LPNMR’97. Springer, LNAI 1265, pp. 420–429, 1997.Google Scholar
  127. [OIH98]
    Y. Ohta, K. Inoue, R. Hasegawa. On the relationship between non-horn magic sets and relevancy testing. Proc. CADE’98, pp. 333–348, 1998.Google Scholar
  128. [Poo89]
    D. Poole. What the lottery paradox tells us about default reasoning. Proc. KR’89, pp. 333–340, 1989.Google Scholar
  129. [Prz88]
    T.C. Przymusinski. On the declarative semantics of deductive databases and logic programming. In [Min88b], Chapter 5, pp. 193–216. 1988.Google Scholar
  130. [Prz89]
    T.C. Przymusinski. On the declarative and procedural semantics of logic programs. Journal of Automated Reasoning, 5: pp. 167–205, 1989.MATHCrossRefMathSciNetGoogle Scholar
  131. [Prz90a]
    T.C. Przymusinski. Stationary semantics for disjunctive logic programs and deductive databases. In Proc. of the North Amer. Conf. on Logic Programming, pp. 40–62, 1990.Google Scholar
  132. [Prz90c]
    T.C. Przymusinski. Extended stable semantics for normal and disjunctive programs. Proc. ICLP’90, pp. 459–477, MIT Press, 1990.Google Scholar
  133. [Prz91]
    T.C. Przymusinski. Stable semantics for disjunctive programs. New Generation Computing, 9: pp. 401–424, 1991.CrossRefGoogle Scholar
  134. [Prz95]
    T.C. Przymusinski. Static semantics for normal and disjunctive logic programs. AMAI 14 (Festschrift in honor of Jack Minker): pp. 323–357, 1995.MATHMathSciNetGoogle Scholar
  135. [Rei78]
    R. Reiter. On closed world data bases. In J. Minker, editors, Logic and Data Bases, Plenum Press, New York [GMN78], pp. 55–76. 1978.Google Scholar
  136. [Rei80]
    R. Reiter. A logic for default reasoning. Journal of Artificial Intelligence, 13: pp. 81–132, 1980.MATHCrossRefMathSciNetGoogle Scholar
  137. [Rei86]
    R. Reiter. A sound and sometimes complete query evaluation algorithm for relational databases with null values. J. ACM, 33(2): pp. 349–370, 1986.CrossRefMathSciNetGoogle Scholar
  138. [Rei87]
    R. Reiter. Nonmonotonic reasoning. Annual Reviews of Comp. Sci., 1987.Google Scholar
  139. [RL90]
    David W. Reed and Donald W. Loveland. A comparison of three Prolog extensions. Journal of Logic Programming, 12(1&2): pp. 25–50, 1992.MATHCrossRefMathSciNetGoogle Scholar
  140. [RLM89]
    A. Rajasekar, J. Lobo, and J. Minker. Weak generalized closed world assumption. Journal of Automated Reasonig, 5(3): pp. 293–307, 1989.MATHCrossRefMathSciNetGoogle Scholar
  141. [RLS91]
    D.W. Reed, D.W. Loveland, and B.T. Smith. An alternative characterization of disjunctive logic programs. In Proc. of the Intl. Symposium on Logic Programming (ISLP’91), pp. 54–68, MIT Press, 1991.Google Scholar
  142. [RM90]
    A. Rajasekar and J. Minker. On stratified disjunctive programs. AMAI 1(1–4): pp. 339–357, 1990.MATHGoogle Scholar
  143. [RM97]
    C. Ruiz and J. Minker. Combining closed world assumptions with stable negation. Fundamenta Informaticae, 32(2): pp. 163–181, 1997.MATHMathSciNetGoogle Scholar
  144. [RM98]
    C. Ruiz and J. Minker. Logic knowledge bases with two default rules. AMAI 22(3–4): pp. 333–361, 1998.MATHMathSciNetGoogle Scholar
  145. [Ros89]
    K. Ross. Well-founded semantics for disjunctive logic programs. Proc. DOOD’89, pp. 352–369, 1989.Google Scholar
  146. [RSS+97]
    P. Rao, K. Sagonas, T. Swift, D.S. Warren, and J. Friere. XSB: A system for efficiently computing well-founded semantics. Proc. LPNMR’97. Springer, LNAI 1265, pp. 430–440, 1997.Google Scholar
  147. [RT88]
    K.A. Ross and R.W. Topor. Inferring negative information from disjunctive databases. J. of Automated Reasoning, 4(2): pp. 397–424, 1988.MATHCrossRefMathSciNetGoogle Scholar
  148. [Sac96]
    D. Saccá. The expressive power of stable models for bound and unbound Datalog queries. J. of Comp. and System Sci., 54(3): pp. 441–464, 1997.MATHCrossRefGoogle Scholar
  149. [SaIn00]
    C. Sakama and K. Inoue. Abductive logic programming and disjunctive logic programming: their relationship and transferability, Journal of Logic Programming, 44(1–3): pp. 75–100, 2000.MATHCrossRefMathSciNetGoogle Scholar
  150. [Sak89]
    C. Sakama. Possible model semantics for disjunctive databases. Proc. DOOD’89, pp. 337–351, 1989.Google Scholar
  151. [Sch90]
    L. Schubert. Monotonic solution of the frame problem in the situation calculus: an efficient method for worlds with fully specified actions. In H.E. Kyburg, R. Loui, and G. Carlson, editors, Knowledge Representation and Defeasible Reasoning, pp. 23–67. Kluwer, 1990.Google Scholar
  152. [Sch95]
    J.S. Schlipf. Complexity and undecideability results for logic programming. AMAI 15(3–4): pp. 257–288, 1995.MATHMathSciNetGoogle Scholar
  153. [Sei94]
    D. Seipel. An efficient computation of the extended generalized closed world assumption by support-for-negation sets. In Proc. of the International Conference on Logic Programming and Automated Reasoning (LPAR’94), Springer, LNAI 822, pp. 245–259, 1994.Google Scholar
  154. [Sei97]
    D. Seipel. Partial evidential stable models for disjunctive deductive databases. In Proc. of the Workshop on Logic Prog. and Knowledge Representation LPKR’97 at ILPS’97, Springer, LNAI 1471, pp. 66–84, 1998.Google Scholar
  155. [Sei99]
    D. Seipel. Aggregation in disjunctive deductive databases. In International Conference on Applications of Prolog (INAP’99), 1999.Google Scholar
  156. [Sei00]
    D. Seipel. Clausal deductive databases and a general framework for semantics in disjunctive deductive databases. In Proc. of the International Symposium on Foundations of Information and Knowledge Systems (FoIKS’2000), Springer, LNCS 1762, pp. 241–259, 2000.CrossRefGoogle Scholar
  157. [She88]
    J.C. Shepherdson. Negation in logic prog. In [Min88b], pp. 19–88. 1988.Google Scholar
  158. [SK91]
    B. Selman and H.A. Kautz. Knowledge compilation using Horn approximations. Proc. AAAI’91, pp. 904–909, 1991.Google Scholar
  159. [SK96]
    B. Selman and H.A. Kautz. Knowledge compilation and theory approximation. Journal of the ACM, 43(2): pp. 193–224, 1996.MATHCrossRefMathSciNetGoogle Scholar
  160. [SMR97]
    D. Seipel, J. Minker, and C. Ruiz. Model generation and state generation for disjunctive logic programs, J. of Logic Prog., 32(1): pp. 48–69, 1997.MathSciNetGoogle Scholar
  161. [SMR97b]
    D. Seipel, J. Minker, and C. Ruiz. A characterization of partial stable models for disjunctive deductive databases, Proc. ILPS’97, pp. 245–259, MIT Press, 1997.Google Scholar
  162. [SL88]
    B.T. Smith and D. Loveland. A simple near-Horn Prolog interpreter. In Proc. of the 5th Intl. Conf. and Symp. on Logic Progr., pp. 794–809, 1988.Google Scholar
  163. [Smu56]
    R.M. Smullyan. Bull, AMS62, 1956. page 600: Elementary formal system (abstract). page 601: On definability by recursion (abstract).Google Scholar
  164. [SS86]
    L.S. Sterling and E.Y. Shapiro. The Art of Prolog. MIT Press, 1986.Google Scholar
  165. [Sti88]
    M. Stickel. A Prolog technology theorem prover: Implementation by an extended Prolog compiler. J. of Aut. Reas., 4(4): pp. 353–380, 1988.MATHCrossRefMathSciNetGoogle Scholar
  166. [Var82]
    M.Y. Vardi. The complexity of relational query languages. In Proc. of the 14th ACM Symp. on Theory of Comp. (STOC’82), pp. 137–146, 1982.Google Scholar
  167. [vEK76]
    M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a programming language. J. of the ACM, 23(4): pp. 733–742, 1976.MATHCrossRefGoogle Scholar
  168. [VaGe88]
    A. Van Gelder. Negation as Failure using tight derivations for general logic programs. In [Min88b], pp. 1149–176. 1988.Google Scholar
  169. [VaGe89]
    A. Van Gelder. The alternating fixpoint of logic programs with negation. Proc. PODS’89, pp. 1–10, 1989.Google Scholar
  170. [VGRS91]
    A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logic programs. J. of the ACM, 38(3): pp. 620–650, 1991.MATHCrossRefGoogle Scholar
  171. [War99]
    D.S. Warren, et al. The XSB programming system. Technical report, State University of New York at Stony Brook, 1999. http://www.cs. sunysb.edu/ sbprolog/xsb-page.html.
  172. [WB93]
    C. Witteveen and G. Brewka. Skeptical reason maintenance and belief revision, Journal of Artificial Intelligence, 61, pp. 1–36, 1993.MATHCrossRefMathSciNetGoogle Scholar
  173. [WVH97]
    C. Witteveen and W. van der Hoek. A general framework for revising nonmonotonic theories, Proc. LPNMR’97, Springer, LNAI 1265, pp. 258–272, 1997.Google Scholar
  174. [Yah97]
    A.H. Yahya. Generalized query answering in disjunctive deductive databases: Procedural and nonmonotonic aspects. Proc. LPNMR’97. Springer, LNAI 1265, pp. 325–341, 1997.Google Scholar
  175. [Yah00]
    A.H. Yahya: Minimal model generation for refined answering of generalized queries in disjunctive deductive databases. Journal of Data and Knowledge Engineering, 34(3), pp. 219–249, 2000.MATHCrossRefMathSciNetGoogle Scholar
  176. [YC89]
    L.Y. Yuan and D.-A. Chiang. A sound and complete query evaluation algorithm for relational databases with disjunctive information. Proc. PODS’89, pp. 66–74. ACM Press, 1989.Google Scholar
  177. [YH85]
    A. Yahya and L.J. Henschen. Deduction in non-Horn databases. Journal of Automated Reasoning, 1(2): pp. 141–160, 1985.MATHCrossRefMathSciNetGoogle Scholar
  178. [YY93]
    L.Y. Yuan and J.-H. You. Autoepistemic circumscription and logic programming. Journal of Automated Reasoning, 10: pp. 143–160, 1993.MATHCrossRefMathSciNetGoogle Scholar
  179. [YY94]
    J.-H. You and L.Y. Yuan. A three-valued semantics for deductive databases and logic programs. J. of Comp. and System Sci., 49: pp. 334–361, 1994.MATHCrossRefMathSciNetGoogle Scholar
  180. [YYG00]
    J.-H. You, L.Y. Yuan, and R. Goebel. An abductive approach to disjunctive logic programming. J. of Logic Programming, 44(1–3): pp. 101–128, 2000.MATHCrossRefMathSciNetGoogle Scholar
  181. [YWY97]
    J.-H. You, X. Wang, and L.Y. Yuan. Disjunctive logic programming as constrained inferences. Proc. ICLP’97, pp. 361–375, 1997.Google Scholar
  182. [Zan84]
    C. Zaniolo. Database relations with null values. Journal of Computer and System Sciences, 28: pp. 142–166, 1984.MATHCrossRefMathSciNetGoogle Scholar
  183. [ZBF97]
    U. Zukowski, S. Brass, and B. Freitag. Improving the alternating fixpoint: The transformation approach, Proc. LPNMR’97, Springer, LNAI 1265, pp. 40–59, 1997.Google Scholar
  184. [ZF99]
    U. Zukowski and B. Freitag. Well-founded semantics by transformation: The non-ground case, Proc. ICLP’99, pp. 456–470, 1999.Google Scholar
  185. [ZW99]
    C. Zaniolo and H. Wang: Logic-based user-defined aggregates for the next generation of database systems. In K.R. Apt, V.W. Marek, M. Truszczyński, and D.S. Warren, editors, The Logic Prog. Paradigm: Current Trends and Future Directions, Springer, pp. 401–426, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jack Minker
    • 1
  • Dietmar Seipel
    • 2
  1. 1.Department of Computer Science and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA
  2. 2.Department of Computer ScienceUniversity of WürzburgWürzburgGermany

Personalised recommendations