How to Employ Reverse Search in Distributed Single Source Shortest Paths

  • Luboš Brim
  • Ivana Černá
  • Pavel Krčál
  • Radek Pelánek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2234)

Abstract

A distributed algorithm for the single source shortest path problem for directed graphs with arbitrary edge lengths is proposed. The new algorithm is basedon relaxations anduses reverse search for inspecting edges and thus avoids using any additional data structures. At the same time the algorithm uses a novel way to recognize a reachable negative-length cycle in the graph which facilitates the scalability of the algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65:21–46, 1996.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of smalltreewidth. In Automata, Languages and Programming, pages 244–255, 1995.Google Scholar
  3. 3.
    B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. MathematicalProgramming, Springer-Verlag, 85:277–311, 1999.MATHMathSciNetGoogle Scholar
  4. 4.
    E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition.Journal of Algorithms, 21(2):331–357, 1996.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.MIT, 1990.Google Scholar
  6. 6.
    A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s shortest path algorithm. In Proc. 23rd MFCS’98, Lecture Notes in ComputerScience, volume 1450, pages 722–731. Springer-Verlag, 1998.Google Scholar
  7. 7.
    U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In 6thInternational EURO-PAR Conference. LNCS, 2000.Google Scholar
  8. 8.
    J. Nievergelt. Exhaustive search, combinatorial optimization anden umeration:Exploring the potential of raw computing power. In SOFSEM 2000, number 1963in LNCS, pages 18–35. Springer, 2000.Google Scholar
  9. 9.
    K. Ramarao and S. Venkatesan. On finding and updating shortest paths distributively.Journal of Algorithms, 13:235–257, 1992.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    J. Tra. and C.D. Zaroliagis. A simple parallel algorithm for the single-sourceshortest path problem on planar digraphs. In Parallel algorithms for irregularlystructured problems, volume 1117 of LNCS, pages 183–194. Springer, 1996.Google Scholar
  11. 11.
    M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification (preliminary report). In 1st Symp. on Logic in Computer Science, LICS’86, pages 332–344. Computer Society Press, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Luboš Brim
    • 1
  • Ivana Černá
    • 1
  • Pavel Krčál
    • 1
  • Radek Pelánek
    • 1
  1. 1.Department of Computer ScienceFaculty of Informatics Masaryk University BrnoCzech Republic

Personalised recommendations