Advertisement

Fq-Linear Cyclic Codes over Fqm: DFT Characterization

  • Bikash Kumar Dey
  • B. Sundar Rajan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2227)

Abstract

Codes over F[inqm that form vector spaces over F q are called Fq-linear codes over Fqm. Among these we consider only cyclic codes and call them F q -linear cyclic codes (F q LC codes) over [itFqm. This class of codes includes as special cases (i) group cyclic codes over elementary abelian groups (q = p, a prime), (ii) subspace subcodes of Reed-Solomon codes and (iii) linear cyclic codes over Fq (m=1). Transform domain characterization of F q LC codes is obtained using Discrete Fourier Transform (DFT) over an extension field of F q m. We show how one can use this transform domain structures to estimate a minimum distance bound for the corresponding quasicyclic code by BCH-like argument.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley, 1983.Google Scholar
  2. 2.
    J. Conan and G. Seguin, “Structural Properties and Enumeration of Quasi Cyclic Codes”, Applicable Algebra in Engineering Communication and Computing, pp. 25–39, Springer-Verlag 1993.Google Scholar
  3. 3.
    B. K. Dey and B. Sundar Rajan, “DFT Domain Characterization of Quasi-Cyclic Codes”, Submitted to IEEE Trans. Inform. Theory.Google Scholar
  4. 4.
    G. D. Forney Jr., Geometrically Uniform Codes, IEEE Trans. Inform. Theory,IT-37 (1991), pp. 1241–1260.CrossRefMathSciNetGoogle Scholar
  5. 5.
    G. D. Forney Jr., On the Hamming Distance Properties of Group Codes, IEEE Trans. Inform. Theory, IT-38 (1992), pp. 1797–1801.CrossRefMathSciNetGoogle Scholar
  6. 6.
    G. Gunther, A Finite Field Fourier Transform for Vectors of Arbitrary Length, Communications and Cryptography: Two Sides of One Tapestry, R. E. Blahut, D. J. Costello, U. Maurer, T. Mittelholzer (Eds), Kluwer Academic Pub., 1994.Google Scholar
  7. 7.
    M. Hattori, R. J. McEliece and G. Solomon, Subspace Subcodes of Reed-Solomon Codes, IEEE Trans. Inform. Theory, IT-44 (1998), pp. 1861–1880.CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Isaksson and L. H. Zetterberg, Block-Coded M-PSK Modulation over GF(M), IEEE Trans. Inform. Theory, IT-39 (1993), pp. 337–346.CrossRefMathSciNetGoogle Scholar
  9. 9.
    K. Lally and P. Fitzpatrick, “Algebraic Structure of Quasicyclic Codes”, to appear in Discrete Applied Mathematics.Google Scholar
  10. 10.
    R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, vol. 20, Cambridge University Press.Google Scholar
  11. 11.
    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1988.Google Scholar
  12. 12.
    McDonald B. R., Finite rings with identity, Marcel Dekker, NewYork, 1974.zbMATHGoogle Scholar
  13. 13.
    M. Ran and J. Snyders, A Cyclic [6,3,4] group code and the hexacode over GF(4)”, IEEE Trans. Inform. Theory, IT-42 (1996), pp. 1250–1253.CrossRefGoogle Scholar
  14. 14.
    B. Sundar Rajan and M. U. Siddiqi, Transform Domain Characterization of Cyclic Codes over Zm, Applicable Algebra in Engineering, Communication and Computing, Vol. 5, No. 5, pp. 261–276, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    B. Sundar Rajan and M. U. Siddiqi, A Generalized DFT for Abelian Codes overZm, IEEE Trans. Inform. Theory, IT-40 (1994), pp. 2082–2090.CrossRefGoogle Scholar
  16. 16.
    B. Sundar Rajan and M. U. Siddiqi, Transform Domain Characterization of Abelian Codes, IEEE Trans. Inform. Theory, IT-38 (1992), pp. 1817–1821.CrossRefGoogle Scholar
  17. 17.
    B. Sundar Rajan and M. U. Siddiqi, Transform Decoding of BCH Codes over Zm, International J. of Electronics, Vol 75, No. 6, pp. 1043–1054, 1993.CrossRefGoogle Scholar
  18. 18.
    R. M. Tanner, “A Transform Theory for a Class of Group-Invariant Codes”, IEEE Trans. Inform. Theory, vol. 34, pp. 752–775, July 1988.Google Scholar
  19. 19.
    A. A. Zain and B. Sundar Rajan, Algebraic Characterization of MDS Group Codes over Cyclic Groups, IEEE Trans. Inform. Theory, IT-41 (1995), pp. 2052–2056.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Bikash Kumar Dey
    • 1
  • B. Sundar Rajan
    • 1
  1. 1.Indian Instute of ScienceBangaloreIndia

Personalised recommendations