Maximal Periods of x2 + c in Fq

  • A. Peinado
  • F. Montoya
  • J. Muñoz
  • A.J. Yuste
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2227)

Abstract

The orbits produced by the iterations of the mapping x↦ X2 + c, defined over Fq, are studied. Several upper bounds for their pe- riods are obtained, depending on the coefficient c and the number of elements q.

Keywords

Pseudorandom sequence generation stream ciphers Pollard generator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach, E., Shallit, J., “Algorithmic Number Theory. Vol I. Efficient algorithms1”, The MIT Press, 1996.Google Scholar
  2. 2.
    Blum, L., Blum, M., Shub, M., “A simple unpredictable pseudorandom number generator”, SIAM Journal on Computing, 15 (1986), pp. 364–383.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Griffin, F., Shparlinski, I., “On the linear complexity profile of the power generator”, IEEE Trans. Inform. Theory, 46 (2000), pp. 2159–2162.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hernández Encinas, L., Montoya Vitini, F., Muñoz Masqué, J., “Generación de sucesiones pseudoaleatorias mediante funciones cuadráticas en ℤpn, y en su límite proyectivo”, Actas de la III Reunión Española de Criptografía, 27–32, (1994).Google Scholar
  5. 5.
    Hernández Encinas, L., Montoya Vitini, F., Muñoz Masqué, J., Peinado Domínguez, A., “Maximal periods of orbits of the BBS generator”, Proc. 1998 International Conference on Information Security & Cryptology (ICISC’ 98), Seoul, Korea, pp. 71–80, (1998).Google Scholar
  6. 6.
    Lang, S.,“Algebra”, Addison-Wesley Publishing Company, 3rd ed., 1993.Google Scholar
  7. 7.
    Lidl, R., Niederreiter, N., “Finite Fields”, Addison-Wesley Publishing Company, 1983.Google Scholar
  8. 8.
    Mceliece, R.,“Finite Fields for computer scientist and engineers”. Kluwer Academic Publishers, 1987.Google Scholar
  9. 9.
    Montoya, F., Muñoz, J., Peinado, A., “Linear complexity of the x2 (mod p )orbits”, Information Processing Letters, 72 (1999), pp. 3–7.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Narkiewicz, W., “Polynomial mappings”, Lecture Notes in Math., 1600. Springer, 1995.Google Scholar
  11. 11.
    Nyang, D., Song, J., “Fast digital signature scheme based on the quadratic residue problem”, Electronics Letters, 33 (1997), pp. 205–206.CrossRefGoogle Scholar
  12. 12.
    Pollard, J.M., “A Monte Carlo method for factorization”, BIT, 15 (1975), pp. 331–334.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rabin, M.O., “Digitalized signatures and public key functions as intractable as factorization”,Technical report,MIT/LCS/TR212, MIT Lab., Comp.Science, Cambridge, Mass, January 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • A. Peinado
    • 1
  • F. Montoya
    • 2
  • J. Muñoz
    • 2
  • A.J. Yuste
    • 3
  1. 1.Dpto. Ingeniería de ComunicacionesE.T.S. Ingeniería de Comunicaciones Universidad de MálagaMálagaSpain
  2. 2.Dpto. de Tratamiento de la Información y CodificaciónInstituto de Física Aplicada (CSIC)MadridSpain
  3. 3.Dpto. ElectrónicaUniversidad de JaenLinaresSpain

Personalised recommendations