Advances in Solid State Physics pp 133-149

Part of the Advances in Solid State Physics book series (ASSP, volume 42)

The Role of Contacts in Molecular Electronics

  • Gianaurelio Cuniberti
  • Frank Großmann
  • Rafael Gutiérrez
Chapter

Abstract

Molecular electronic devices are the upmost destiny of the miniaturization trend of electronic components. Although not yet reproducible on large scale, molecular devices are since recently subject of intense studies both experimentally and theoretically, which agree in pointing out the extreme sensitivity of such devices on the nature and quality of the contacts. This chapter intends to provide a general theoretical framework for modeling electronic transport at the molecular scale by describing the implementation of a hybrid method based on Green function theory and density functional algorithms. In order to show the presence of contact-dependent features in the molecular conductance, we discuss three archetypal molecular devices, which are intended to focus on the importance of the different sub-parts of a molecular two-terminal setup.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Reed, Proc. IEEE 87, 652(1999).CrossRefGoogle Scholar
  2. 2.
    C. Joachim, J. K. Gimzewski, and A. Aviram, Nature 408, 541 (2000).CrossRefGoogle Scholar
  3. 3.
    G. Cuniberti, G. Fagas, and K. Richter, Acta Phys. Pol. 32, 437 (2001).Google Scholar
  4. 4.
    K. W. Hipps, Science 294, 536 (2001).CrossRefGoogle Scholar
  5. 5.
    J. M. Seminario, C. E. De la Cruz, and P. A. Derosa, J. Am. Chem. Soc. 123, 5616 (2001).CrossRefGoogle Scholar
  6. 6.
    G. Cuniberti, E. De Micheli, and G. Viano, Commun. Math. Phys. 16, 59 (2001); P. A. Derosa and J. M. Seminario, J. Phys. Chem. B 105, 471 (2001).CrossRefGoogle Scholar
  7. 7.
    G. Cuniberti et al., Physica E 12, 749 (2002); R. Gutiérrez et al., Phys. Rev. B 65, 113410 (2002).CrossRefGoogle Scholar
  8. 8.
    M. Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 88, 046801 (2002).CrossRefGoogle Scholar
  9. 9.
    B. Kramer, Phys. Bl. 50, 543 (1994).Google Scholar
  10. 10.
    R. Landauer, IBM J. Res. Develop. 1, 223 (1957), reprinted in J. Math. Phys. 37, 5259 (1996).Google Scholar
  11. 11.
    M. Büttiker, IBM J. Res. Develop. 32, 317 (1988).Google Scholar
  12. 12.
    B. K. Nikolic, Phys. Rev. B 64, 165303 (2001).CrossRefGoogle Scholar
  13. 13.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1999).Google Scholar
  14. 14.
    B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).CrossRefGoogle Scholar
  15. 15.
    D. A. Wharam et al., J. Phys. C 21, L209 (1988).CrossRefGoogle Scholar
  16. 16.
    Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).CrossRefGoogle Scholar
  17. 17.
    D. S. Fisher and P. A. Lee, Phys. Rev. B 23, R6851 (1981); T. N. Todorov, G. A. D. Briggs, and A. P. Sutton, J. Phys.-Condens. Matter 5, 2389 (1993).CrossRefGoogle Scholar
  18. 18.
    A. D. Stone and A. Szafer, IBM J. Res. Develop. 32, 384 (1988).CrossRefGoogle Scholar
  19. 19.
    S. Priyadarshi, S. S. Skourtis, S. M. Risser, and D. N. Beratan, J. Chem. Phys. 104, 9473 (1996).CrossRefGoogle Scholar
  20. 20.
    Single Charge Tunneling, edited by H. Grabert and M. H. Devoret (Plenum Press, New York, 1992).Google Scholar
  21. 21.
    V. Mujica, M. Kemp, and M. A. Ratner, J. Chem. Phys. 101, 6856 (1994).CrossRefGoogle Scholar
  22. 22.
    C. M. Goringe, D. R. Bowler, and E. Hernández, Rep. Prog. Phys. 60, 1447 (1997); S. Datta et al., Phys. Rev. Lett. 79, 2530 (1997); M. Magoga and C. Joachim, Phys. Rev. B 56, 4722 (1997); E. G. Emberly and G. Kirczenow, Phys. Rev. B 58, 10911 (1998); M. Paulsson and S. Stafström, J. Phys.-Condens. Matter 11, 3555 (1999); L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 54, 2600 (1996).CrossRefGoogle Scholar
  23. 23.
    N. D. Lang and P. Avouris, Phys. Rev. Lett. 84, 358 (2000); S. N. Yaliraki et al., J. Chem. Phys. 111, 6997 (1999); J. J. Palacios, A. J. Perez-Jimenez, E. Louis, and J. A. Verges, Phys. Rev. B 64, 115411 (2001); H.-S. Sim, H.-W. Lee, and K. J. Chang, Phys. Rev. Lett. 87, 096803 (2001); J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001); P. S. Damle, A. W. Ghosh, and S. Datta, Phys. Rev. B 64, 201403 (2001).CrossRefGoogle Scholar
  24. 24.
    R. Gutiérrez, F. Großmann, and R. Schmidt, Acta Phys. Pol. 32, 443 (2001).Google Scholar
  25. 25.
    R. Gutiérrez, F. Großmann, O. Knospe, and R. Schmidt, Phys. Rev. A 64, 013202 (2001).CrossRefGoogle Scholar
  26. 26.
    M. Toerker et al., Submitted to Phys. Rev. B (2002).Google Scholar
  27. 27.
    N. D. Lang and P. Avouris, Phys. Rev. Lett. 81, 3515 (1998).CrossRefGoogle Scholar
  28. 28.
    D. M. Newns, Phys. Rev. 178, 1123 (1969).CrossRefGoogle Scholar
  29. 29.
    A. Karlsson et al., Nature 409, 150 (2001).CrossRefGoogle Scholar
  30. 30.
    T. Rueckes et al., Science 289, 94 (2000); N. Yoneya, E. Watanabe, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 79, 1465 (2001).CrossRefGoogle Scholar
  31. 31.
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific Publishing Co. Pte. Ltd., London, 1998).Google Scholar
  32. 32.
    P. McEuen, Phys. World 13, 31 (2000).Google Scholar
  33. 33.
    V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Nano Letters 1, 453 (2001); H. W. C. Postma et al., Science 293, 76 (2001); R. Martel et al., Appl. Phys. Lett. 73, 2447 (1998).CrossRefGoogle Scholar
  34. 34.
    H. Watanabe, C. Manabe, T. Shigematsu, and M. Shimizu, Appl. Phys. Lett. 78, 2928 (2001). S. S. Wong et al., Nature 394, 52 (1998).CrossRefGoogle Scholar
  35. 35.
    H. Nishijima et al., Appl. Phys. Lett. 74, 4061 (2000).CrossRefGoogle Scholar
  36. 36.
    S. Akita, H. Nishijima, T. Kishida, and Y. Nakayama, Jpn. J. Appl. Phys. 39, 7086 (2000); A. I. Onipko et al., Phys. Rev. B 61, 11118 (2000); A. L. Vázquez de Parga et al., Phys. Rev. Lett. 80, 357 (1998).CrossRefGoogle Scholar
  37. 37.
    C. Thelander et al., Appl. Phys. Lett. 79, 2106 (2001); M. P. Anantram, S. Datta, and Y. Xue, Phys. Rev. B 61, 14219 (2000); P. J. de Pablo et al., Appl. Phys. Lett. 74, 323 (1999).CrossRefGoogle Scholar
  38. 38.
    G. Cuniberti, G. Fagas, and K. Richter, To appear in Chem. Phys. (2002).Google Scholar
  39. 39.
    J. Yi, G. Cuniberti, and M. Porto, Submitted to Phys. Rev. A (2002).Google Scholar
  40. 40.
    V. Mujica, M. Kemp, and M. A. Ratner, J. Chem. Phys. 101, 6849 (1994).CrossRefGoogle Scholar
  41. 41.
    A. Nitzan, Ann. Rev. Phys. Chem. 52, 681 (2001); L. E. Hall, J. R. Reimers, N. S. Hush, and K. Silverbrook, J. Chem. Phys. 112, 1510 (2000).CrossRefGoogle Scholar
  42. 42.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992); P. R. Wallace, Phys. Rev. 71, 622 (1947).CrossRefGoogle Scholar
  43. 43.
    M. S. Ferreira, T. G. Dargam, R. B. Muniz, and A. Latgé, Phys. Rev. B 63, 245111 (2001).CrossRefGoogle Scholar
  44. 44.
    H. J. Choi and J. Ihm, Solid State Commun. 111, 385 (1999).CrossRefGoogle Scholar
  45. 45.
    C. Zeng, H. Wang, B. Wang, and J. G. Hou, Appl. Phys. Lett. 77, 3595 (2000).CrossRefGoogle Scholar
  46. 46.
    Y. Xue, S. Datta, and M. A. Ratner, To appear in Chem. Phys. (2002).Google Scholar
  47. E. H. Hauge and J. A. Støvneng, Rev. Mod. Phys. 61, 917 (1989).CrossRefGoogle Scholar
  48. 47.
    G. Cuniberti, A. Fechner, M. Sassetti, and B. Kramer, Europhys. Lett. 48, 66 (1999).CrossRefGoogle Scholar
  49. 48.
    H. J. Schulz, G. Cuniberti, and P. Pieri, in Field theories for low-dimensional condensed matter systems, edited by G. Morandi et al. (Springer, Berlin, 2000).Google Scholar
  50. 49.
    G. Cuniberti, M. Sassetti, and B. Kramer, Europhys. Lett. 37, 421 (1997).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Gianaurelio Cuniberti
    • 1
  • Frank Großmann
    • 2
  • Rafael Gutiérrez
    • 2
  1. 1.Max Planck Institute for the Physics of Complex SystemsDresdenGermany
  2. 2.Institute for Theoretical PhysicsTechnical University of DresdenDresdenGermany

Personalised recommendations