A General Theorem Prover for Quantified Modal Logics

  • V. Thion
  • S. Cerrito
  • Marta Cialdea Mayer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2381)

Abstract

The main contribution of this work is twofold. It presents a modular tableau calculus, in the free-variable style, treating the main domain variants of quantified modal logic and dealing with languages where rigid and non-rigid designation can coexist. The calculus uses, to this end, light and simple semantical annotations. Such a general proof-system results from the fusion into a unified framework of two calculi previously defined by the second and third authors. Moreover, the work presents a theorem prover, called GQML-Prover, based on such a calculus, which is accessible in the Internet. The fair deterministic proof-search strategy used by the prover is described and illustrated via a meaningful example.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Beckert and R. Goré. Free variable tableaux for propositional modal logics. In Proc. of TABLEAUX’97, pages 91–106. Springer, 1997.Google Scholar
  2. 2.
    S. Cerrito and M. Cialdea Mayer. Free-variable tableaux for constant-domain quantified modal logic with rigid and non-rigid designation. In First Int. Joint Conf. on Automated Reasoning (IJCAR 2001), pages 137–151. Springer, 2001.Google Scholar
  3. 3.
    M. Cialdea Mayer and S. Cerrito. Variants of first-order modal logics. In Proc. of TABLEAUX 2000, pages 175–189. Springer, 2000.Google Scholar
  4. 4.
    M. Cialdea Mayer and S. Cerrito. Ground and free-variable tableaux for variants of quantified modal logics. Studia Logica, 69:97–131, 2001.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial Intelligence, 124:87–138, 2000.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, 1983.Google Scholar
  7. 7.
    M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.Google Scholar
  8. 8.
    M. Fitting and R Mendelsohn. First-Order Modal Logic. Kluwer, 1998.Google Scholar
  9. 9.
    R. Goré. Automated reasoning project. Technical report, TR-ARP-15-95, 1997.Google Scholar
  10. 10.
    R. Hähnle and P. H. Schmitt. The liberalized δ-rule in free variable semantic tableaux. Journal of Automated Reasoning, 13:211–222, 1994.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    U. Hustadt and R. A. Schmidt. Simplification and backjumping in modal tableau. In Proc. of TABLEAUX’98, pages 187–201. Springer, 1998.Google Scholar
  12. 12.
    Jens Otten. ileanTAP: An intuitionistic theorem prover. In Proc. of TABLEAUX’97, pages 307–312. Springer, 1997.Google Scholar
  13. 13.
    J. Posegga and P. Schmitt. Implementing semantic tableaux. In M. D’Agostino, G. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of tableau method, pages 581–629. Kluwer, 1999.Google Scholar
  14. 14.
    V. Thion. A strategy for free variable tableaux for variant of quantified modal logics. Technical report, L.R.I., 2002. http://www.lri.fr/~thion.
  15. 15.
    L. A. Wallen. Automated Deduction in Nonclassical Logics: Efficient Matrix Proof Methods for Modal and Intuitionistic Logics. MIT Press, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • V. Thion
    • 1
  • S. Cerrito
    • 1
  • Marta Cialdea Mayer
    • 2
  1. 1.L.R.I.Université de Paris-SudFrance
  2. 2.Dipartimento di Informatica e AutomazioneUniversità di Roma TreItaly

Personalised recommendations