On Combining Functional Verification and Performance Evaluation Using CADP

  • Hubert Garavel
  • Holger Hermanns
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2391)


Considering functional correctness and performance evaluation in a common framework is desirable, both for scientific and economic reasons. In this paper, we describe how the Cadp toolbox, originally designed for verifying the functional correctness of Lotos specifications, can also be used for performance evaluation. We illustrate the proposed approach by the performance study of the Scsi-2 bus arbitration protocol.


Label Transition System Process Algebra Functional Correctness Delay Transition Strong Bisimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Marsan, G. Balbo, and G. Conte. A Class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM Trans. on Comp. Sys., 2(2), 1984.Google Scholar
  2. 2.
    ANSI. Small Computer System Interface-2. Standard X3.131-1994, American National Standards Institute, 1994.Google Scholar
  3. 3.
    M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A Tool Integrating Functional and Performance Analysis of Concurrent Systems. In Proc. FORTE’98, IFIP, North-Holland, 1998.Google Scholar
  4. 4.
    M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time. Th. Comp. Sci., 202:1–54, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Bert. Preuve de propriétés d’équité en B: Preuve de l’algorithme d’arbitrage du bus SCSI-3. In Proc. AFADL’2001 (Nancy, France), pages 221–241, June 2001.Google Scholar
  6. 6.
    L. Blair, G. Blair, and A. Andersen. Separating Functional Behaviour and Performance Constraints: Aspect-Oriented Specification. Technical Report MPG-98-07, Computing Department, Lancaster University, 1998.Google Scholar
  7. 7.
    T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. Comp. Netw. and ISDN Sys., 14(1):25–59, 1988.CrossRefGoogle Scholar
  8. 8.
    P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models. INFORMS J. on Comp., 13(3):203–222, 2000.CrossRefMathSciNetGoogle Scholar
  9. 9.
    L. de Alfaro. How to specify and verify the long-run average behavior of probabilistic systems. In Proc. Symp. on Logic in Computer Science, 1998.Google Scholar
  10. 10.
    D. Ferrari. Considerations on the Insularity of Performance Evaluation. IEEE Trans. on Softw. Eng., SE-12(6):678–683, June 1986.Google Scholar
  11. 11.
    H. Garavel. Compilation of LOTOS abstract data types. In Proc. FORTE’89, pages 147–162. IFIP, North-Holland, 1989.Google Scholar
  12. 12.
    H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verification. In Proc. FORTE’2001, pages 377–392. IFIP, Kluwer Academic, 2001. Full version available as INRIA Research Report RR-4223.Google Scholar
  13. 13.
    H. Garavel and J. Sifakis. Compilation and verification of LOTOS specifications. In Proc. PSTV’90, pages 379–394. IFIP, North-Holland, 1990.Google Scholar
  14. 14.
    S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-Based Approach to Performance Modelling. In Proc. TOOLS’94, 1994.Google Scholar
  15. 15.
    N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system design: The integration of functional specification and performance analysis using stochastic process algebras. In Tutorial Proc. PERFORMANCE’ 93. Springer, LNCS 729, 1993.Google Scholar
  16. 16.
    S. Graf, B. Steffen, and G. Luettgen. Compositional Minimization of Finite State Systems. Formal Asp. of Comp., 8(5):607–616, 1996.zbMATHCrossRefGoogle Scholar
  17. 17.
    H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. INRIA Technical Report RT-254, December 2001.Google Scholar
  18. 18.
    J.F. Groote and J. van de Pol. State space reduction using partial τ-confluence. In Proc. MFCS’2000, pages 383–393. Springer, LNCS 1893, 2000.Google Scholar
  19. 19.
    H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg, 1998. revised version to appear as Springer LNCS monograph.Google Scholar
  20. 20.
    H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evaluation. Th. Comp. Sci., 274(1–2):43–87, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Compositional performance modelling with the TIPPtool. Perf. Eval., 39(1–4):5–35, January 2000.Google Scholar
  22. 22.
    H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov Chain Model Checker. In Proc. TACAS’2000, pages 347–362, Springer, LNCS 1785, 2000.Google Scholar
  23. 23.
    H. Hermanns and J.P. Katoen. Automated compositional Markov chain generation for a plain-old telephony system. Sci. of Comp. Prog., 36(1):97–127, 2000.zbMATHCrossRefGoogle Scholar
  24. 24.
    O. Hjiej, A. Benzekri, and A. Valderruten. From Annotated LOTOS specifications to Queueing Networks: Automating Performance Models Derivation. Decentralized and Distributed Systems (North Holland), 1993.Google Scholar
  25. 25.
    J. Hillston. The Nature of Synchronisation. In Proc. PAPM’94, Arbeitsberichte des IMMD, Universität Erlangen-Nürnberg. pages 51–70, 1994.Google Scholar
  26. 26.
    J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.Google Scholar
  27. 27.
    ISO/IEC. LOTOS — A Formal Description Technique based on the Temporal Ordering of Observational Behaviour. International Standard 8807, ISO-Information Processing Systems-Open Systems Interconnection, 1988.Google Scholar
  28. 28.
    ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, ISO-Information Technology, 2001.Google Scholar
  29. 29.
    A. Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valenzano. A LOTOS Extension for the Performance Analysis of Distributed Systems. IEEE/ACM Trans, on Networking, 2(2), 151–164, 1994.CrossRefGoogle Scholar
  30. 30.
    M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach. In Proc. TACAS’2002, pages 52–66, 2002, Springer LNCS 2280.Google Scholar
  31. 31.
    F. Lang. Compositional Verification using SVL Scripts. In Proc. TACAS’2002, pages 465–469, 2002, Springer LNCS 2280.Google Scholar
  32. 32.
    M.F. Neuts. Matrix-geometric Solutions in Stochastic Models-An Algorithmic Approach. The Johns Hopkins University Press, 1981.Google Scholar
  33. 33.
    M.L. Puterman. Markov Decision Processes. John Wiley, 1994.Google Scholar
  34. 34.
    W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University Press, 1994.Google Scholar
  35. 35.
    K. J. Turner, editor. Using Formal Description Techniques-An Introduction to ESTELLE, LOTOS, and SDL. John Wiley, 1993.Google Scholar
  36. 36.
    C. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification styles in distributed systems design and verification. Th. Comp. Sci., 89(1):179–206, 1991.zbMATHCrossRefGoogle Scholar
  37. 37.
    M. Zendri. Studio ed implementazione di un modello del bus SCSI. Laurea thesis, Politecnico di Milano, Facoltà di Ingegneria, Dip. di Elettronica, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Hubert Garavel
    • 1
  • Holger Hermanns
    • 2
  1. 1.INRIA Rhône-Alpes / VASYMontbonnot Saint-MartinFrance
  2. 2.Formal Methods and Tools GroupUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations