Model Reduction for Systems with Low-Dimensional Chaos

  • Carlo Piccardi
  • Sergio Rinaldi
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 273)


A method for deriving a reduced model of a continuous-time dynamical system with low-dimensional chaos is discussed. The method relies on the identification of peak-to-peak dynamics, i.e. the possibility of approximately (but accurately) predicting the next peak amplitude of an output variable from the knowledge of at most the two previous peaks. The reduced model is a simple one-dimensional map or, in the most complex case, a set of one-dimensional maps. Its use in control system design is discussed by means of some examples.


Chaotic System Model Reduction Chaotic Attractor Lorenz System Chaotic Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Obinata G., Anderson B.D.O. (2001) Model Reduction for Control System Design. Springer, New YorkzbMATHGoogle Scholar
  2. 2.
    Chen G., Dong X. (1998) From Chaos to Order, Methodologies, Perspectives and Applications. World Scientific, SingaporezbMATHGoogle Scholar
  3. 3.
    Chen G. (Ed.) (2000) Controlling Chaos and Bifurcations in Engineering Systems. CRC, Boca Raton, FLzbMATHGoogle Scholar
  4. 4.
    Candaten M., Rinaldi S. (2000) Peak-to-Peak Dynamics: a Critical Survey. Int. J. Bif. Chaos 10:1805–1819zbMATHMathSciNetGoogle Scholar
  5. 5.
    Lorenz E.N. (1963) Deterministic Nonperiodic Flow. J. Atm. Sci. 20:130–141CrossRefGoogle Scholar
  6. 6.
    Abarbanel H.D.I., Korzinov L., Mees A.I., Rulkov N.F. (1997) Small Force Control of Nonlinear Systems to Given Orbits. IEEE Trans. Circ. Sys. I 44:1018–1023CrossRefGoogle Scholar
  7. 7.
    Piccardi C., Rinaldi S. (2000) Optimal Control of Chaotic Systems via Peakto-Peak Maps. Physica D 144:298–308zbMATHCrossRefGoogle Scholar
  8. 8.
    Piccardi C., Rinaldi S. (2001) Control of Complex Peak-to-Peak Dynamics. Int. J. Bif. Chaos, to appearGoogle Scholar
  9. 9.
    Piccardi C. (2001) Controlling Chaotic Oscillations in Delay-Differential Systems via Peak-to-Peak Maps. IEEE Trans. Circ. Sys. I, to appearGoogle Scholar
  10. 10.
    Guckenheimer J., Holmes P. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New YorkzbMATHGoogle Scholar
  11. 11.
    Eckmann J.P., Ruelle D. (1985) Ergodic Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 57:617–656CrossRefMathSciNetGoogle Scholar
  12. 12.
    Alligood K.T., Sauer T.D., Yorke J.A. (1996) Chaos, An Introduction to Dynamical Systems. Springer, New YorkzbMATHGoogle Scholar
  13. 13.
    Peng B., Scott S.K., Showalter K. (1990) Period Doubling and Chaos in a Three Variable Autocatalator. J. Phys. Chem. 94:5243–5246CrossRefGoogle Scholar
  14. 14.
    Pivka L., Wu C.W., Huang A. (1996) Lorenz Equation and Chua’s Equation. Int. J. Bif. Chaos 6:2443–2489CrossRefMathSciNetGoogle Scholar
  15. 15.
    Rössler O.E. (1979) An Equation for Hyperchaos. Phys. Lett. A 71:155–157CrossRefMathSciNetGoogle Scholar
  16. 16.
    Bertsekas D.P. (1995) Dynamic Programming and Optimal Control. Athena, Belmont, MasszbMATHGoogle Scholar
  17. 17.
    Singer J., Wang Y.Z., Bau H.H. (1991) Controlling a Chaotic System. Phys. Rev. Lett. 66:1123–1125CrossRefGoogle Scholar
  18. 18.
    Wang H.O., Abed E.H. (1995) Bifurcation Control of a Chaotic System. Automatica 31:1213–1226zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kuang J. (1993) Delay Differential Equations with Applications in Population Dynamics. Academic, Boston, MasszbMATHGoogle Scholar
  20. 20.
    Diekmann O., van Gils S.A., Verduyn Lunel S.M., Walther H.O. (1995) Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer, New YorkzbMATHGoogle Scholar
  21. 21.
    Farmer J.D. (1982) Chaotic Attractors of an Infinite-Dimensional Dynamical System. Physica D 4:366–393CrossRefMathSciNetGoogle Scholar
  22. 22.
    Ikeda K., Matsumoto K. (1987) High-Dimensional Chaotic Behavior in Systems with Time-Delayed Feedback. Physica D 29:223–235zbMATHCrossRefGoogle Scholar
  23. 23.
    Celka P. (1997) Delay-Differential Equation versus 1D-Map: Application to Chaos Control. Physica D 104:127–147zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Mackey M.C., Glass L. (1977) Oscillation and Chaos in Physiological Control Systems. Science 197:287–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Carlo Piccardi
    • 1
  • Sergio Rinaldi
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations