Deriving Symbolic Representations from Stochastic Process Algebras

  • Matthias Kuntz
  • Markus Siegle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2399)

Abstract

A new denotational semantics for a variant of the stochastic process algebra TIPP is presented, which maps process terms to Multi-terminal binary decision diagrams. It is shown that the new semantics is Markovian bisimulation equivalent to the standard SOS semantics. The paper also addresses the difficult question of keeping the underlying state space minimal at every construction step.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Algebraic Decision Diagrams and their Applications. Formal Methods in System Design, 10(2/3):171–206, April/May 1997.Google Scholar
  2. 2.
    M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time. Theoretical Computer Science, 202:1–54, 1998.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    H. Bohnenkamp. Kompositionelle Semantiken stochastischer Prozeßalgebren zur Erzeugung reduzierter Transitionssysteme. Master’s thesis, University of Erlangen-Nürnberg, Informatik 7, 1995 (in German).Google Scholar
  4. 4.
    A. Bouali and R. de Simone. Symbolic Bisimulation Minimisation. In Computer Aided Verification, pages 96–108, 1992. LNCS 663.Google Scholar
  5. 5.
    R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, C-35(8):677–691, August 1986.Google Scholar
  6. 6.
    P. Buchholz. Exact and Ordinary Lumpability in Finite Markov Chains. Journal of Applied Probability, (31):59–75, 1994.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic Model Checking for Probabilistic Processes using MTBDDs and the Kronecker Representation. In S. Graf and M. Schwartzbach, editors, TACAS 2000, LNCS 1785, pages 395–410, Berlin, 2000.Google Scholar
  8. 8.
    A. Dsouza and B. Bloom. Generating BDD models for process algebra terms. In Computer Aided Verification, pages 16–30, 1995. LNCS 939.Google Scholar
  9. 9.
    R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model checking in CCS. Distributed Computing, (6):155–164, 1993.MATHCrossRefGoogle Scholar
  10. 10.
    J.C. Fernandez. An Implementation of an Efficient Algorithm for Bisimulation Equivalence. Science of Computer Programming, 13:219–236, 1989.CrossRefGoogle Scholar
  11. 11.
    M. Fujita, P. McGeer, and J.C.-Y. Yang. Multi-terminal Binary Decision Diagrams: An efficient data structure for matrix representation. Formal Methods in System Design, 10(2/3):149–169, April/May 1997.Google Scholar
  12. 12.
    N. Götz. Stochastische Prozeßalgebren-Integration von funktionalem Entwurf und Leistungsbewertung Verteilter Systeme. Ph.D. thesis, Universität Erlangen-Nürnberg, 1994 (in German).Google Scholar
  13. 13.
    H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras — Between LOTOS and Markov Chains. Computer Networks and ISDN (CNIS), 30(9-10):901–924, 1998.CrossRefGoogle Scholar
  14. 14.
    H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Terminal Binary Decision Diagrams to Represent and Analyse Continuous Time Markov Chains. In B. Plateau, W.J. Stewart, and M. Silva, editors, 3rd Int. Workshop on the Numerical Solution of Markov Chains, pages 188–207. Prensas Universitarias de Zaragoza, 1999.Google Scholar
  15. 15.
    H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP. In Proc. of PAPM’94, pages 71–88. Arbeitsberichte des IMMD 27 (4), Universität Erlangen-Nürnberg, 1994.Google Scholar
  16. 16.
    H. Hermanns and M. Siegle. Bisimulation Algorithms for Stochastic Process Algebras and their BDD-based Implementation. In J.-P. Katoen, editor, ARTS’99, 5th Int. AMAST Workshop on Real-Time and Probabilistic Systems, pages 144–264. Springer, LNCS 1601, 1999.Google Scholar
  17. 17.
    J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.Google Scholar
  18. 18.
    P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three Problems of Equivalence. Information and Computation, 86:43–68, 1990.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and Symbolic CTMC Model Checking. In PAPM-PROBMIV 2001, pages 23–38. Springer, LNCS 2165, 2001.Google Scholar
  20. 20.
    M. Kuntz and M. Siegle. Deriving symbolic representations from stochastic process algebras. Tech. Rep. Informatik 7 03/02, Universität Erlangen-Nürnberg, 2002.Google Scholar
  21. 21.
    M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic Model Checker. In P. Kemper, editor, MMB-PNPM-PAPM-PROBMIV Tool Proceedings, pages 7–12. Univ. Dortmund, Informatik IV, Bericht 760/2001, 2001.Google Scholar
  22. 22.
    R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.MATHGoogle Scholar
  23. 23.
    R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing, 16(6):973–989, 1987.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Rettelbach and M. Siegle. Compositional Minimal Semantics for the Stochastic Process Algebra TIPP. In Proc. of PAPM’94, pages 89–106. Arbeitsberichte des IMMD 27 (4), Universität Erlangen-Nürnberg, 1994.Google Scholar
  25. 25.
    M. Siegle. Compact representation of large performability models based on extended BDDs. In Fourth Int. Workshop on Performability Modeling of Computer and Communication Systems (PMCCS4), pages 77–80, Williamsburg, Sept. 1998.Google Scholar
  26. 26.
    M. Siegle. Compositional Representation and Reduction of Stochastic Labelled Transition Systems based on Decision Node BDDs. In D. Baum, N. Müller, and R. Rödler, editors, MMB’99, pages 173–185, Trier, September 1999. VDE Verlag.Google Scholar
  27. 27.
    M. Siegle. Advances in model representation. In L. de Alfaro and S. Gilmore, editors, Process Algebra and Probabilistic Methods, Joint Int. Workshop PAPM-PROBMIV 2001, pages 1–22. Springer, LNCS 2165, September 2001.Google Scholar
  28. 28.
    R. Sisto. A method to build symbolic representations of LOTOS specifications. In Protocol Specification, Testing and Verification, pages 323–338, 1995.Google Scholar
  29. 29.
    A. Xie and P.A. Beerel. Implicit Enumeration of Strongly Connected Components. In ICCAD’99, pages 37–40. IEEE, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Matthias Kuntz
    • 1
  • Markus Siegle
    • 1
  1. 1.Institut für InformatikFriedrich-Alexander-Universität Erlangen-NürnbergGermany

Personalised recommendations