Advertisement

Using Formal Analysis Techniques in Business Process Redesign

  • Kees M. van Hee
  • Hajo A. Reijers
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1806)

Abstract

Formal analysis techniques can deliver important support during business process redesign efforts. This chapter points out the (potential) contribution of these formal analysis techniques by giving an outline on the subject first. Next, a specific, newly developed formal technique is discussed.

Keywords

Business Process Service Time Discrete Fourier Transform Business Process Model Throughput Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cormen, T. H., Leiseron, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press, Cambridge (1990).Google Scholar
  2. 2.
    Hee, van, K.M.: Information Systems Engineering: a Formal Approach. Cambridge University Press (1994).Google Scholar
  3. 3.
    Hee, van, K.M., Aalst, van der, W.M.P.: Workflow Managament: Modellen, Methoden en Systemen. Academic Service, Schoonhoven (1997) [In Dutch]Google Scholar
  4. 4.
    Hee, van, K.M., Reijers, H.A.: An Analytical Method for Computing Throughput Times in Stochastic Workflow Nets. Proceedings of the 7th Analytical and Numerical Modelling Techniques Conference (1999) [Forthcoming]Google Scholar
  5. 5.
    Jensen, K: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Vol. 1, Basic Concepts. Springer-Verlag, Berlin (1992).Google Scholar
  6. 6.
    Levin, R., Kirkpatrick, C.: Planning and control with PERT/CPM. McGraw-Hill, New York (1966).Google Scholar
  7. 7.
    Neuman, K., Steinhardt, U.: GERT Networks, vol. 172 of Lecture Notes in Economic and Mathematical Systems. Springer-Verlag, Berlin (1979).Google Scholar
  8. 8.
    Thomasian, A.J.: The structure of Probability Theory with Applications. McGraw-Hill Book Company, New York (1969).zbMATHGoogle Scholar
  9. 9.
    Tijms, H. C.: Stochastic Models: an Algorithmic Approach. John Wiley & Sons, New York (1994).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Kees M. van Hee
    • 1
  • Hajo A. Reijers
    • 1
  1. 1.Faculty of Mathematics and Computing ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations