Advertisement

Parallel FEM Simulation of Crack Propagation — Challenges, Status, and Perspectives

  • Bruce Carter
  • Chuin-Shan Chen
  • L. Paul Chew
  • Nikos Chrisochoides
  • Guang R. Gao
  • Gerd Heber
  • Antony R. Ingraffea
  • Roland Krause
  • Chris Myers
  • Demian Nave
  • Keshav Pingali
  • Paul Stodghill
  • Stephen Vavasis
  • Paul A. Wawrzynek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1800)

Abstract

Understanding how fractures develop in materials is crucial to many disciplines, e.g., aeronautical engineering, material sciences, and geophysics. Fast and accurate computer simlation of crack propagation in realistic 3D structures would be a valuable tool for engineers and scientists exploring the fracture process in materials. In the following, we will describe a next generation crack propagation simulation software that aims to make this potential a reality.

Keywords

Stress Intensity Factor Error Indicator Nite Element Nite Element Method Sparse Direct Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object-oriented numerical software libaries. In E. Arge, A.M. Bruaset, and H.P. Langtangen, editors, Modern Software Tools in Scientific Computing. Birkhauser Press, 1997.Google Scholar
  2. [2]
    Stephen T. Barnard and Robert Clay. A portable MPI implementation of the SPAI preconditioner in ISIS++. In Eighth SIAM Conference for Parallel Processing for Scientific Computing, March 1997.Google Scholar
  3. [3]
    R. Biswas and L. Oliker. A new procedure for dynamic adaption of three-dimensional unstructured grids. Applied Numerical Mathematics, 13:437–452, 1994.zbMATHCrossRefGoogle Scholar
  4. [4]
  5. [5]
    Nikos Chrisochoides and Demian Nave. Simultaneous mesh generation and partitioning for Delaunay meshes. In 8th Int’l. Meshing Roundtable, 1999.Google Scholar
  6. [6]
    J.P. de S.R. Gago, D.W. Kelly, O.C. Zienkiewicz, and I. Babuška. A posteriori error analysis and adaptive processes in the finite element method: Part II-Adaptive mesh refinement. International Journal for Numerical Methods in Engineering, 19:1621–1656, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    I. Hladik, M.B. Reed, and G. Swoboda. Robust preconditioners for linear elasticity FEM analyses. International Journal for Numerical Methods in Engineering, 40:2109–2127, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Mark T. Jones and Paul E. Plassmann. Blocksolve95 users manual: Scalable library software for the parallel solution of sparse linear systems. Technical Report ANL-95/48, Argonne National Laboratory, December 1995.Google Scholar
  9. [9]
    D.W. Kelly, J.P. de S.R. Gago, O.C. Zienkiewicz, and I. Babuška. A posteriori error analysis and adaptive processes in the finite element method: Part I-Error analysis. International Journal for Numerical Methods in Engineering, 19:1593–1619, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Roland Krause. Multiscale Computations with a Combined h-and p-Version of the Finite Element Method. PhD thesis, Universität Dortmund, 1996.Google Scholar
  11. [11]
    J.B.C. Neto et al. An algorithm for three-dimensional mesh generation for arbitrary regions with cracks. submitted for publication.Google Scholar
  12. [12]
  13. [13]
  14. [14]
  15. [15]
    J.M. Winget and T.J.R. Hughes. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies. Computational Methods in Applied Mechanical Engineering, 52:711–815, 1985.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bruce Carter
    • 1
  • Chuin-Shan Chen
    • 1
  • L. Paul Chew
    • 2
  • Nikos Chrisochoides
    • 3
  • Guang R. Gao
    • 4
  • Gerd Heber
    • 1
  • Antony R. Ingraffea
    • 1
  • Roland Krause
    • 5
  • Chris Myers
    • 1
  • Demian Nave
    • 3
  • Keshav Pingali
    • 2
  • Paul Stodghill
    • 2
  • Stephen Vavasis
    • 2
  • Paul A. Wawrzynek
    • 1
  1. 1.Cornell Fracture Group, Rhodes HallCornell UniversityIthaca
  2. 2.CS Department, Upson HallCornell UniversityIthaca
  3. 3.CS DepartmentUniversity of Notre DameNotre Dame
  4. 4.EECIS DepartmentUniversity of DelawareNewark
  5. 5.Center for Comp. Mech.Washington UniversitySaint Louis

Personalised recommendations