Advertisement

Coping with Inconsistent Constraint Specifications

  • Sven Hartmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2224)

Abstract

Due to the complexity ofmo dern database applications, semantic information is no longer a unified whole, but arises from multiple sources. Whatever the type of the sources, information fusion raises the crucial problem ofin consistent sets ofin tegrity constraints. While earlier research mostly concentrated on consistency checking, less attention has been paid to the resolution ofcon straint conflicts in entity-relationship modeling. We suggest four strategies towards conflict resolution: (1) determination ofs uperfluous object types, (2) incremental consistency checking, (3) detection ofmi nimal inconsistent subsets, (4) constraint correction via feedback arc elimination, and apply them to constraint sets containing cardinality constraints and key dependencies.

Keywords

Object Type Integrity Constraint Information Fusion Relationship Type Database Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Albrecht, E. Buchholz, A. Düsterhöft, and B. Thalheim. An informal and efficient approach for obtaining semantic constraints using sample data and natural language processing. LNCS, 1358:1–11, 1996.Google Scholar
  2. 2.
    D. Calvanese and M. Lenzerini. On the interaction between ISA and cardinality constraints. In Proc. of Tenth Int. Conf. on Data Engin., pp. 204–213, 1994.Google Scholar
  3. 3.
    P.P. Chen. The entity-relationship model: towards a unified view of data. ACM Trans. Database Syst., 1:9–36, 1976.CrossRefGoogle Scholar
  4. 4.
    B.V. Cherkassy and A.V. Goldberg. Negative cycle detection algorithms. Math. Programming, 85:277–311, 1998.CrossRefGoogle Scholar
  5. 5.
    B.V. Cherkassy, A.V. Goldberg, and T. Radzik. Shortest path algorithms: theory and experimental evaluation. Math. Programming, 73:129–174, 1996.MathSciNetGoogle Scholar
  6. 6.
    L. Cholvy and A. Hunter. Information fusion in logic: a brief survey. LNAI, 1244:86–95, 1997.Google Scholar
  7. 7.
    P. Eades, X. Lin, and W.F. Smyth. A fast and effective heuristic for the feedback arc set problem. Inf. Process. Letters, 47:319–323, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M.M. Flood. Exact and heuristic algorithms for the weighted feedback arc set problem. Networks, 20:1–23, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A.V. Goldberg and T. Radzik. A heuristic improvement oft he Bellman-Ford algorithm. Appl. Math. Letters, 6:3–6, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Gondran and M. Minoux. Graphs and algorithms. Wiley, Chichecter, 1990.Google Scholar
  11. 11.
    M. Grötchel, M. Jünger, and G. Reichelt. On the acyclic subgraph polytope. Math. Programming, 33:28–42, 1985.CrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Hartmann. Graphtheoretic methods to construct entity-relationship databases. LNCS, 1017:131–145, 1995.Google Scholar
  13. 13.
    S. Hartmann. On the consistency of int-cardinality constraints. LNCS, 1507:150–163, 1998.Google Scholar
  14. 14.
    S. Hartmann. On interactions ofcard inality constraints, key and functional dependencies. LNCS, 1762:136–155, 2000.Google Scholar
  15. 15.
    S. Hartmann. On the implication problem for cardinality constraints and functional dependencies. Annals Math. Artificial Intell., 2001, to appear.Google Scholar
  16. 16.
    R. Hassin and S. Rubinstein. Approximations for the maximum acyclic subgraph problem. Inf. Process. Letters, 51:133–140, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    S.G. Kolliopoulos and C. Stein. Finding real-valued single source shortest paths in o(n 3) expected time. In Proc. 5th Int. Prog. Combin. Opt. Conf. 1996.Google Scholar
  18. 18.
    M.L Lee and T.W. Ling. Resolving constraint conflicts in the integration of entity-relationship schemas. LNCS, 1331:394–407, 1997.Google Scholar
  19. 19.
    M. Lenzerini and P. Nobili. On the satisfiability ofd ependency constraints in entity-relationship schemata. Inform. Syst., 15:453–461, 1990.CrossRefGoogle Scholar
  20. 20.
    S.W. Liddle, D.W. Embley, and S.N. Woodfield. Cardinality constraints in semantic data models. Data Knowledge Eng., 11:235–270, 1993.zbMATHCrossRefGoogle Scholar
  21. 21.
    E. Di Nitto and L. Tanca. Dealing with deviations in DBMSs: an approach to revise consistency constraints. Integrity in Databases, FMLDO96, pp. 11–24. 1996.Google Scholar
  22. 22.
    R.E. Tarjan. Data structures and network algorithms. SIAM, Philadelphia, 1983.Google Scholar
  23. 23.
    B. Thalheim. Entity-relationship modeling. Springer, Berlin, 2000.zbMATHGoogle Scholar
  24. 24.
    D. Theodorates. Deductive object oriented schemas. LNCS, 1157:58–72, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Sven Hartmann
    • 1
  1. 1.FB MathematikUniversität RostockRostockGermany

Personalised recommendations