Network Flow Problems in Constraint Programming

  • Alexander Bockmayr
  • Nicolai Pisaruk
  • Abderrahmane Aggoun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2239)

Abstract

We introduce a new global constraint for modeling and solving network flow problems in constraint programming. We describe the declarative and operational semantics of the flow constraint and illustrate its use through a number of applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling and placement problems. Mathl. Comput. Modelling, 17(7):57–73, 1993.CrossRefGoogle Scholar
  2. 2.
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms and applications. Prentice Hall, 1993.Google Scholar
  3. 3.
    R. K. Ahuja, J. B. Orlin, G. M. Sechi, and P. Zuddas. Algorithms for the simple equal flow problem. Management Science, 45(10):1440–1455, 1999.CrossRefGoogle Scholar
  4. 4.
    N. Beldiceanu. Global constraints as graph properties on a structured network of elementary constraints of the same type. In Principles and Practice of Constraint Programming, CP’2000, Singapore, pages 52–66. Springer, LNCS 1894, 2000.Google Scholar
  5. 5.
    N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathl. Comput. Modelling, 20(12):97–123, 1994.MATHCrossRefGoogle Scholar
  6. 6.
    N. Beldiceanu, H. Simonis, Ph. Kay, and P. Chan. The CHIP system, 1997. http://www.cosytec.fr/whitepapers/PDF/english/chip3.pdf.
  7. 7.
    A. Bockmayr and T. Kasper. Branch-and-infer: A unifying framework for integer and finite domain constraint programming. INFORMS J. Computing, 10(3):287–300, 1998.MATHMathSciNetGoogle Scholar
  8. 8.
    H. A. Eiselt and C.-L. Sandblom. Integer programming and network models. Springer, 2000.Google Scholar
  9. 9.
    F. Focacci, A. Lodi, and M. Milano. Cutting planes in constraint programming: An hybrid approach. In Principles and Practice of Constraint Programming, CP’2000, Singapore, pages 187–201. Springer, LNCS 1894, 2000.Google Scholar
  10. 10.
    A. J. Hoffman. Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. Proceedings of Symposia on Applied Mathematics, 10:113–127, 1960.Google Scholar
  11. 11.
    H. J. Kim and J. N. Hooker. Solving fixed-charge network flow problems with a hybrid optimization and constraint programming approach. GSIA, Carnegie Mellon University, January 2001.Google Scholar
  12. 12.
    K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In Principles and Practice of Constraint Programming, CP’2000, Singapore, pages 306–319. Springer, LNCS 1894, 2000.Google Scholar
  13. 13.
    M. Milano, G. Ottosson, P. Refalo, and E. S. Thorsteinsson. Global constraints: When constraint programming meets operation research. INFORMS Journal on Computing, Special Issue on the Merging of Mathematical Programming and Constraint Programming, March 2001. Submitted.Google Scholar
  14. 14.
    G. Ottosson, E. S. Thorsteinsson, and J. N. Hooker. Mixed global constraints and inference in hybrid CLP-IP solvers. Annals of Mathematics and Artificial Intelligence, Special Issue on Large Scale Combinatorial Optimisation and Constraints, March 2001. Accepted for publication.Google Scholar
  15. 15.
    P. Refalo. Linear formulation of constraint programming models and hybrid solvers. In Principles and Practice of Constraint Programming, CP’2000, Singapore, pages 369–383. Springer, LNCS 1894, 2000.Google Scholar
  16. 16.
    J.-C. Régin and M. Rueher. A global constraint combining a sum constraint and difference constraint. In Principles and Practice of Constraint Programming, CP’2000, Singapore, pages 384–395. Springer, LNCS 1894, 2000.Google Scholar
  17. 17.
    H. Simonis, A. Aggoun, N. Beldiceanu, and E. Bourreau. Complex constraint abstraction: Global constraint visualisation. In Analysis and Visualization Tools for Constraint Programming, pages 299–317. Springer, LNCS 1870, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alexander Bockmayr
    • 1
  • Nicolai Pisaruk
    • 1
  • Abderrahmane Aggoun
    • 2
  1. 1.LORIAUniversité Henri PoincaréVandœuvre-lès-NancyFrance
  2. 2.COSYTEC S.A.Parc Club Orsay UniversitéOrsayFrance

Personalised recommendations