Approximation Spaces of Type-Free Sets

  • Peter Apostoli
  • Akira Kanda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2005)

Abstract

We present an approximation space (U;R) which is an infinite (hypercontinuum) solution to the domain equation UC(R), the family of elementary subsets of U. Thus U is a universe of type-free sets and R is the relation of indiscernibility with respect to membership in other type-free sets. R thus associates a family [u]R of elementary subsets with uU, whence (U;R) induces an generalized approximation space (U; c : UU; i : UU); where c(u) = ∪[u]R and i(u) = ∩[u]R.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostoli,P.,Kanda,A., Parts of the Continuum: towards a modern ontology of science,forthcoming in the Poznan Studies in the Philosophy of Science and the Humanities (ed.Leszek Nowak).Google Scholar
  2. 2.
    Bell J. L., “TypeReducingCorrespondencesandWell-Orderings: Frege’s andZermelo’s Constructions Re-examined,” J. of Symbolic Logic, 60, (1995).Google Scholar
  3. 3.
    Bell J. L., “The Set as One and the Set as Many,” J. of Symbolic Logic, (1999).Google Scholar
  4. 4.
    Cattaneo, G., “Abstract Approximation Spaces for Rough Theories,” Rough Sets in Knowledge Discovery:Methodology and Applications, eds. L. Polkowski, A. Skowron. Studies in Fuzziness and Soft Computing. Ed.: J. Kacprzyk. Vol. 18, Springer (1998).Google Scholar
  5. 5.
    Cocchiarella, N., “Wither Russell’s Paradox of Predication?”, Nous, (1972).Google Scholar
  6. 6.
    Lewis, D., “Counterpart Theory and QuantifiedModal Logic,” J. of Philosophy 65 (1968), pp 113–26. Reprinted inMichael J. Loux [ed.] The Possible and the Actual (1979; Cornell U.P.)CrossRefGoogle Scholar
  7. 7.
    Lin, T. Y., “Neighborhood Systems: A Qualitative Theory for Fuzzy and Rough Sets,” Advances in Machine Intelligence and Soft Computing,Volume IV. Ed. Paul Wang, (1997) 132–155.Google Scholar
  8. 8.
    Lin, T. Y., “A Set Theory for Soft Computing. A unified View of Fuzzy Sets via Neighborhoods,” Proceedingsof 1996 IEEE InternationalConferenceon Fuzzy Systems,NewOrleans, Louisiana, September 8-11, 1996, 1140–1146.Google Scholar
  9. 9.
    Pawlak Z., “Rough Sets,” International Journal of Computer and Information Sciences, 11, 341–350, (1982).CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Pawlak Z., “Rough Set Elements,” Rough Sets in Knowledge Discovery:Methodology and Applications, eds. L. Polkowski, A. Skowron. Studies in Fuzziness and Soft Computing. Ed.: J. Kacprzyk. Vol. 18, Springer (1998).Google Scholar
  11. 11.
    Plotkin G., “A Power Domain Construction,” SIAM Journal on Computing, 5, 452–487, (1976).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wiweger, Antoni, “On TopologicalRough Sets,” Bulletin of the PolishAcademy of Sciences, Mathematics, Vol 37, No. 16, (1989).Google Scholar
  13. 13.
    Yao, Y. Y., “Constructive and Algebraic Methods of the Theory of Rough Sets,” Journal of Information Sciences 109, 21–47 (1998).MATHCrossRefGoogle Scholar
  14. 14.
    Yao, Y. Y., “On Generalizing Pawlak Approximation Operators,” eds. L. Polkowski and A. Skowron, RSCTC'98, LNAI 1414, pp. 289–307, (1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Peter Apostoli
    • 1
  • Akira Kanda
    • 1
  1. 1.Department of PhilosophyUniversity of TorontoToronto

Personalised recommendations