Advertisement

Illuminating Polygons with Vertex π-Floodlights

  • Csaba D. Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2073)

Abstract

It is shown that any simple polygon with n vertices can be illuminated by at most ⌊(3n - 5)/4⌋ vertex π-floodlights. This improves the earlier bound n— 2, whereas the best lower bound remains 3n/5+c.

References

  1. 1.
    Chvátal, V., A combinatorial theorem in plane geometry, J. Combinatorial Theory Ser. B 18 (1975), 39–41.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Estivill-Castro, V., O’Rourke, J., Urrutia, J., and Xu, D., Illumination of polygons with vertex guards, Inform. Process. Lett. 56 (1995) 9–13.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Estivill-Castro, V. and Urrutia, J., Optimal floodlight illumination of orthogonal art galleries, in Proc of the 6th Canad. Conf. Comput. Geom. (1994) 81–86.Google Scholar
  4. 4.
    Fisk, S., A short proof of Chvátal’s watchman theorem, J. Combinatorial Theory Ser. B 24 (1978), 374.Google Scholar
  5. 5.
    O’Rourke, J., Open problems in the combinatorics of visibility and illumination, in: Advances in Discrete and Computational Geometry (B. Chazelle, J. E. Goodman, and R. Pollack, eds.), AMS, Providence, 1998, 237–243.Google Scholar
  6. 6.
    O’Rourke J., Art gallery theorems and algorithms, The International Series of Monographs on Computer Science, Oxford University Press, New York, 1987.Google Scholar
  7. 7.
    Tóth, Cs. D., Art gallery problem with guards whose range of vision is 180°, Comput. Geom. 17 (2000) 121–134.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Tóth Cs. D., Floodlight illumination of polygons with uniform 45° angles, submitted.Google Scholar
  9. 9.
    Urrutia, J., Art Gallery and Illumination Problems, in: Handbook on Computational Geometry (J. R. Sack, J. Urrutia eds.), Elsevier, Amsterdam, 2000, 973–1027.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Csaba D. Tóth
    • 1
  1. 1.Institut für Theoretische Informatik ETH ZürichZürichSwitzerland

Personalised recommendations