Advertisement

Cellular Automata as a Mesoscopic Approach to Model and Simulate Complex Systems

  • P. M. A. Sloot
  • A. G. Hoekstra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2073)

Abstract

We discuss the cellular automata approach and its extensions, the lattice Boltzmann and multiparticle methods. The potential of these techniques is demonstrated in the case of modeling complex systems. In particular, we consider simple applications taken from various scientific domains. We discuss our distributed particle simulation of flow, based on a parallel lattice Boltzmann Method. Efficient parallel execution is possible, provided that (dynamic) load balancing techniques are applied. Next, we present a number of case studies of flow in complex geometry, i.e. flow in porous media and in static mixer reactors.

Keywords

Cellular Automaton Cellular Automaton Lattice Boltzmann Method Collision Operator Load Balance Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Toffoli, T., Margolus, N.: Cellular Automata Machines-A New Environment for Modelling. MIT Press, Cambridge, MA (1987)Google Scholar
  2. 2.
    von Neumann, J.: Theory of Self-Reproducing Automata. In: A. W. Burks (eds.), University of Illinois Press, Champaign, Il (1966)Google Scholar
  3. 3.
    Talia, D., Sloot, P. (eds.), Special Issue: Cellular Automata: Promises and Prospects in Computational Science. Future Generation Computer Systems, (1999)Google Scholar
  4. 4.
    Sloot, P. M. A., Kaandorp, J. A., Hoekstra, A. G., Overeinder, B. J.: Distributed Cellular Automata: Large Scale Simulation of Natural Phenomena. In: A. Zomaya (eds.), Solutions to Parallel and Distributed Computing Problems: Lessons from Biological Sciences. John Wiley & Sons, (2001)Google Scholar
  5. 5.
    Mange, D., Tomassini, M. (eds.),Bio-inspired Computing Machines. Lausanne (1998)Google Scholar
  6. 6.
    Moore, C., Nordahl, M. G.: Lattice Gas Prediction is P-Complete. Santa Fe Institute, 97-04-034 (1997)Google Scholar
  7. 7.
    Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, (1994)Google Scholar
  8. 8.
    Frish, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56 (1986) 1505CrossRefGoogle Scholar
  9. 9.
    Chopard, B., Droz, M.: Cellular Automata Modelling of Physical Systems. Cambridge University Press, (1998)Google Scholar
  10. 10.
    Rothman, D. H., Zaleski, S.: Lattice-Gas Cellular Automata, Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  11. 11.
    Chen, S., Doolen, G. D.: Lattice Boltzmann Method for Fluid Flows. Ann. Rev. Fluid Mech. 30 (1998) 329CrossRefMathSciNetGoogle Scholar
  12. 12.
    Dubbeldam, D., Hoekstra, A. G., Sloot, P. M. A.: Computational Aspects of Multi-Species Lattice-Gas Automata. In: P. M. A. Sloot, Bubak, M., Hoekstra, A. G. & Hertzberger, L. O. (eds.), Proceedings of the International Conference HPCN Europe’ 99. Springer Verlag, Berlin (1999) 339–349Google Scholar
  13. 13.
    Kandhai, D., Koponen, A., Hoekstra, A. G., Kataja, M., Timonen, J., Sloot, P. M. A.: Lattice Boltzmann Hydrodynamics on Parallel Systems. Comp. Phys. Comm. 111 (1998) 14–26zbMATHCrossRefGoogle Scholar
  14. 14.
    Simon, H. D.: Partioning of unstructured problems for parallel processing. Computing Systems in Engeneering 2 (1991) 135–148CrossRefGoogle Scholar
  15. 15.
    Kaandorp, J. A., Lowe, C., Frenkel, D., Sloot, P. M. A.: The effect of nutrient diffusion and flow on coral morphology. Phys. Rev. Lett. 77 (1996) 2328–2331CrossRefGoogle Scholar
  16. 16.
    Schoneveld, A., de Ronde, J., accepted for publication in Fut. Gen. Comp. Syst., 1999.Google Scholar
  17. 17.
    de Ronde, J., Schoneveld, A., Sloot, P. M. A.: Load balancing by redundant decomposition and mapping. In: H. Liddell, Colbrook, A., Hertzberger, B. & Sloot, P. (eds.), High Performance Computing and Networking (HPCN’96). (1996) 555–561Google Scholar
  18. 18.
    Machta, J., Greenlaw, R.: The parallel complexity of growth models. Journal of Statistical Physics 77 (1994) 755–781zbMATHCrossRefGoogle Scholar
  19. 19.
    Machta, J.: The computational complexity of pattern formation. Journal of Statistical Physics 70 (1993) 949–967zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Koponen, A., Kandhai, D., Hellin, E., Alava, M., Hoekstra, A., Kataja, M., Niskanen, K., Sloot, P., Timonen, J.: Permeability of three-dimensional random fiber webs. Phys. Rev. Lett. 80 (1998) 716–719CrossRefGoogle Scholar
  21. 21.
    Kandhai, D., Vidal, D., Hoekstra, A., Hoefsloot, H., Iedema, P., Sloot, P.: Lattice-Boltzmann and Finite-Element Simulations of Fluid Flow in a SMRX Static Mixer. Int. J. Num. Meth. Fluids 31 (1999) 1019–1033zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • P. M. A. Sloot
    • 1
  • A. G. Hoekstra
    • 1
  1. 1.Section Computational Science, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations