Quantum Nucleation of Phase Slips in Bose—Einstein Condensates

  • H. P. Büchler
  • V. B. Geshkenbein
  • G. Blatter
Part of the Lecture Notes in Physics book series (LNP, volume 571)


We present a theoretical study of quantum fluctuations in a Bose-Einstein condensate confined within a thin cylindrical trap and perturbed by a moving impurity. We derive an effective action which maps the problem to that of a massive particle with damping in a periodic potential. Quantum fluctuations lead to a finite nucleation rate of phase slips and we make use of known results in our determination of the transport characteristic. Real Bose-Einstein condensate are finite systems and exhibit interesting effects depending on topology: in superfluid rings we obtain a critical velocity below which the nucleation rate is quenched. In a cigar shaped condensate the low-energy action is equivalent to that of a capacitively shunted Josephson junction. The state with a well defined phase difference across the impurity then is unstable towards a decoupled state with a fixed number of particles on either side of the impurity.


Nucleation Rate Critical Velocity Einstein Condensate Phase Slip Bloch Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Raman et al., Phys. Rev. Lett. 83, 2502 (1999).CrossRefADSGoogle Scholar
  2. 2.
    J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35, 4682 (1987).CrossRefADSGoogle Scholar
  3. 3.
    N. Giordano, Physica B 203, 460 (1994).CrossRefADSGoogle Scholar
  4. 4.
    A. Bezryadin, C. N. Lau, and M. Tinkham, Nature 404, 971 (2000).CrossRefADSGoogle Scholar
  5. 5.
    A. D. Zaikin, D. S. Golubev, A. van Otterlo, and G. T. Zimányi, Phys. Rev. Lett. 78, 1552 (1997); V. A. Kashurnikov, A. I. Podlivaev, N. V. Prokof'ev, and B. V. Svistunov, Phys. Rev. B 53, 13091 (1996); Y. Kagan, V. N. Prokof'ev, and B. V. Svistunov, Phys. Rev. A 61, 045601 (2000).CrossRefADSGoogle Scholar
  6. 6.
    R. Onofrio et al., Phys. Rev. Lett. 85, 2228 (2000).CrossRefADSGoogle Scholar
  7. 7.
    F. Dalfovo, S. Giorgini, L. P. Pitaevksii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).CrossRefADSGoogle Scholar
  8. 8.
    H. P. Büchler, V. D. Geshkenbein, and G. Blatter, to be published.Google Scholar
  9. 9.
    A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983).CrossRefADSGoogle Scholar
  10. 10.
    M. Tinkham, Introduction to Superconductivity, McGraw-Hill, 1996.Google Scholar
  11. 11.
    A. Schmid, Phys. Rev. Lett. 51, 1506 (1983); S. A. Bulgadaev, Sov. Phys. JETP Lett. 39, 317 (1984).CrossRefADSGoogle Scholar
  12. 12.
    G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).CrossRefADSGoogle Scholar
  13. 13.
    U. Weiss, H. Grabert, P. Hänggi, and P. Riseborough, Phys. Rev. B 35, 9535 (1987).CrossRefADSGoogle Scholar
  14. 14.
    S. Coleman, Phys. Rev. D 16, 2929 (1977); C. G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977); S. Coleman, Aspects of symmetry, Cambridge University Press, 1988.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • H. P. Büchler
    • 1
  • V. B. Geshkenbein
    • 1
    • 2
  • G. Blatter
    • 1
  1. 1.Theoretische PhysikETH-HönggerbergZürichSwitzerland
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations