“What Is a Petri Net?” Informal Answers for the Informed Reader

  • Jörg Desel
  • Gabriel Juhás
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2128)

Abstract

The increasing number of Petri net variants naturally leads to the question whether the term “Petri net” is more than a common name for very different concepts. This contribution tries to identify aspects common to all or at least to most Petri nets. It concentrates on those features where Petri nets significantly differ from other modeling languages, i.e. we ask where the use of Petri nets leads to advantages compared to other languages. Different techniques that are usually comprised under the header “analysis” are distinguished with respect to the analysis aim. Finally, the role of Petri nets in the development of distributed systems is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.M.P. van der Aalst, J. Desel and A. Oberweis (Eds.) Business Process Management. Springer, LNCS 1806, 2000.Google Scholar
  2. 2.
    W.M.P. van der Aalst. Formalization and Verification of Event-Driven Process Chains. Information and Software Technology, 41(10):639–650, 1999.CrossRefGoogle Scholar
  3. 3.
    J. Becker, M. Rosemann and C. von Uthmann. Guidelines of Business Process Modeling. In J. Desel and A. Oberweis (Eds.) Business Process Management. Springer, LNCS 1806, 2000 [1], pp. 30–49.CrossRefGoogle Scholar
  4. 4.
    R. Bruni and V. Sassone. Two Algebraic Process Semantics for Contextual Nets. In this volume.Google Scholar
  5. 5.
    J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge Tracs in Theoretical Computer Science 40, Cambridge University Press 1995.Google Scholar
  6. 6.
    J. Desel. How Distributed Algorithms Play the Token Game. In C. Freksa, M. Jantzen and R. Valk (Eds.) Foundations of Computer Science: Potential-Theory-Cognition, Springer, LNCS 1337, pp. 297–306, 1997.Google Scholar
  7. 7.
    J. Desel, K.-P. Neuendorf and M.-D. Radola. Proving Nonreachability by Modulo-Invariants. Theoretical Computer Science, 153(1–2): 49–64.Google Scholar
  8. 8.
    J. Desel and W. Reisig. Place/Transition Petri Nets. In G. Rozenberg (Eds.). Lectures on Petri Nets I: Basic Models. Advances in Petri Nets, Springer, LNCS 1491, 1998 [25], pp. 122–173.Google Scholar
  9. 9.
    J. Desel. Petrinetze, lineare Algebra und lineare Programmierung. Teubner-Texte zur Informatik, Band 26, B. G. Teubner, 1998.Google Scholar
  10. 10.
    J. Desel. Validation of Process Models by Construction of Process Nets. In J. Desel and A. Oberweis (Eds.) Business Process Management. Springer, LNCS 1806, 2000 [1], pp. 110–128.CrossRefGoogle Scholar
  11. 11.
    J. Desel, G. Juhás and R. Lorenz. Petri Nets over Partial Algebra. In this volume.Google Scholar
  12. 12.
    J. Desel, G. Juhás and R. Lorenz. Process Semantics and Process Equivalence of NCEM. In S. Philippi (Ed.) Proc. 7. Workshop Algorithmen und Werkzeuge für Petrinetze AWPN’00, Fachberichte Informatik, Universität Koblenz-Landau, pp. 7–12, October 2000.Google Scholar
  13. 13.
    C. Ermel and M. Weber. Implementation of Parametrized Net Classes with the Petri Net Kernel. In this volume.Google Scholar
  14. 14.
    R. Eshuis and R. Wieringa. A formal semantics for UML activity diagrams, 2000. Available at http://www.cs.utwente.nl/ eshuis/sem.ps.
  15. 15.
    J. Esparza. Model checking using net unfoldings. Science of Computer Programming 23(2): 151–195, 1994.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Esparza. Decidability and Complexity of Petri Net Problems —An Introduction. In G. Rozenberg (Eds.). Lectures on Petri Nets I: Basic Models. Advances in Petri Nets, Springer, LNCS 1491, 1998 [25], pp. 374–428.Google Scholar
  17. 17.
    M. Gajewsky and H. Ehrig. The PNT-Baukasten and its Expert View. In this volume.Google Scholar
  18. 18.
    T. Gehrke, U. Goltz and H. Wehrheim. Zur semantischen Analyse der dynamischen Modelle von UML mit Petri-Netzen. In E. Schnieder (Ed.): Tagungsband der 6. Fachtagung Entwicklung und Betrieb komplexer Automatisierungssysteme (EKA’ 99), pp. 547–566, Beyrich, Braunschweig, 1999.Google Scholar
  19. 19.
    H.-M. Hanisch and M. Rausch. Synthesis of Supervisory Controllers Based on a Novel Representation of Condition/Event Systems. In Proc. IEEE International Conference on Systems Man and Cybernetics, Vancouver, British Columbia, Canada, October 22–25, 1995.Google Scholar
  20. 20.
    M. Jüngel, E. Kindler and M. Weber. The Petri Net Markup Language. In S. Philippi (Ed.) Proc. 7. Workshop Algorithmen und Werkzeuge für Petrinetze AWPN’00, Fachberichte Informatik, Universität Koblenz-Landau, pp. 47–52, October 2000.Google Scholar
  21. 21.
    J. Meseguer, P. Ölveczky, and M.-O. Stehr. Rewriting Logic as a Unifying Framework for Petri Nets. In this volume.Google Scholar
  22. 22.
    J. Padberg and H. Ehrig. Parametrized Net Classes: A uniform approach to net classes. In this volume.Google Scholar
  23. 23.
    C. A. Petri. Kommunikation mit Automaten. PhD thesis, Univ. Bonn, 1962.Google Scholar
  24. 24.
    W. Reisig. A Primer in Petri Net Design. Springer, 1992.Google Scholar
  25. 25.
    W. Reisig and G. Rozenberg (Eds.). Lectures on Petri Nets I: Basic Models. Advances in Petri Nets, Springer, LNCS 1491, 1998.MATHGoogle Scholar
  26. 26.
    W. Reisig and G. Rozenberg (Eds.). Lectures on Petri Nets II: Applications. Advances in Petri Nets, Springer, LNCS 1491, 1998.Google Scholar
  27. 27.
    W. Reisig. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets. Springer, 1998.Google Scholar
  28. 28.
    D. Ross and K. Schoman. Structured analysis for requirements definition. IEEE Transactions on Software Engineering Vol. SE-3, No. 1, pp. 6–15, 1977.CrossRefGoogle Scholar
  29. 29.
    F. J. Rump. Geschäftsprozes management auf der Basis ereignisgesteuerter Prozeßketten. Teubner-Reihe Wirtschaftsinformatik, B. G. Teubner, 1999.Google Scholar
  30. 30.
    J. Rumbaugh, I. Jacobson, G. Booch. The unified Modeling Language Reference Manual. Addison-Wesley, 1999.Google Scholar
  31. 31.
    A.-W. Scheer and M. Nüttgens. ARIS Architecture and Reference Models for Business Process Management. In J. Desel and A. Oberweis (Eds.) Business Process Management. Springer, LNCS 1806, 2000 [1] pp. 376–390.CrossRefGoogle Scholar
  32. 32.
    E. Smith. Principles of high-level net theory. In G. Rozenberg (Eds.). Lectures on Petri Nets I: Basic Models. Advances in Petri Nets, Springer, LNCS 1491, 1998 [25], pp. 174–210.Google Scholar
  33. 33.
    R. S. Sreenivas and B. H. Krogh Petri Net Based Models for Condition/Event Systems. In Proceedings of 1991 American Control Conference, vol. 3, pp. 2899–2904, Boston, MA, 1991.Google Scholar
  34. 34.
    A. Valmari. The State Explosion Problem. In G. Rozenberg (Eds.). Lectures on Petri Nets I: Basic Models. Advances in Petri Nets, Springer, LNCS 1491, 1998 [25], pp. 429–528.Google Scholar
  35. 35.
    H. Weber, H. Ehrig and W. Reisig (Eds.). Proc. Colloquium on Petri Net Technologies for Modelling Communication Based Systems. Berlin, October 1999.Google Scholar
  36. 36.
    H. Weber, S. Lembke and A. Borusan. Petri Nets Made Usable: The Petri Net Baukasten for Application Development. In this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jörg Desel
    • 1
  • Gabriel Juhás
    • 1
  1. 1.Lehrstuhl für Angewandte InformatikKatholische Universität EichstättEichstättGermany

Personalised recommendations