Advertisement

Generalized Zig-zag Functions and Oblivious Transfer Reductions

  • Paolo D’Arco
  • Douglas Stinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2259)

Abstract

In this paper we show some efficient and unconditionally secure oblivious transfer reductions. Our main tool is a class of functions that generalizes the Zig-zag functions, introduced by Brassard, Crepéau, and Sántha in [6]. We show necessary and sufficient conditions for the existence of such generalized functions, and some characterizations in terms of well known combinatorial structures. Moreover, we point out an interesting relation between these functions and ramp secret sharing schemes where each share is a single bit.

Keywords

Oblivious Transfer Zig-zag Functions Ramp Schemes 

References

  1. 1.
    G.R. Blakley, Security of Ramp Schemes, Advances in Cryptology: Crypto’ 84, pp. 547–559, LNCS Vol. 196, pp. 242-268, 1984.Google Scholar
  2. 2.
    M. Bellare and S. Micali, Non-interactive Oblivious Transfer and Applications, Advances in Cryptology: Crypto’ 89, Springer-Verlag, pp. 547–559, 1990.Google Scholar
  3. 3.
    M. Blum, How to Exchange (Secret) Keys, ACM Transactions of Computer Systems, Vol. 1, No. 2, pp. 175–193, 1993CrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Brassard, C. Crepéau, and J.-M. Roberts, Information Theoretic Reductions Among Disclosure Problems, Proceedings of 27th IEEE Symposium on Foundations of Computer Science, pp. 168–173, 1986.Google Scholar
  5. 5.
    G. Brassard, C. Crepéau, and J.-M. Roberts, All-or-Nothing Disclosure of Secrets, Advances in Cryptology: Crypto’ 86, Springer-Verlag, Vol. 263, pp. 234–238, 1987.Google Scholar
  6. 6.
    G. Brassard, C. Crepéau, and M. Sántha, Oblivious Transfer and Intersecting Codes, IEEE Transaction on Information Theory, special issue in coding and complexity, Vol. 42, No. 6, pp. 1769–1780, 1996.zbMATHCrossRefGoogle Scholar
  7. 7.
    C. Blundo, A. De Santis, and U. Vaccaro, Efficient Sharing of Many Secrets, Proceedings of STACS, LNCS Vol. 665, pp.692–703, 1993.Google Scholar
  8. 8.
    R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai, Exposure-Resilient Functions and All-or-Nothing Transforms, Advances in Cryptology: Proceedings of EuroCrypt 2000, Springer-Verlag, LNCS vol. 1807, pp. 453–469, 2000.CrossRefGoogle Scholar
  9. 9.
    G. Cohen and A. Lempel, Linear Intersecting Codes, Discrete Mathematics, Vol. 56, pp. 35–43, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, 1991.Google Scholar
  11. 11.
    C. Crepéau, A Zero-Knowledge Poker Protocol that Achieves Con.dentiality of the Players’ Strategy or How to Achieve an Electronic Poker Face, Advances in Cryptology: Proceedings of Crypto’ 86, Springer-Verlag, pp. 239–247, 1987.Google Scholar
  12. 12.
    C. Crepéau, Equivalence between to flavors of oblivious transfers, Advances in Cryptology: Proceedings of Crypto’ 87, Springer-Verlag, vol. 293, pp. 350–354, 1988.Google Scholar
  13. 13.
    C. Crepéau and J. Kilian, Achieving Oblivious Transfer Using Weakened Security Assumptions, Proceedings of 29th IEEE Symposium on Foundations of Computer Science, pp. 42–52, 1988.Google Scholar
  14. 14.
    Y. Dodis and S. Micali, Lower Bounds for Oblivious Transfer Reduction, Advances in Cryptology: Proceedings of Eurocrypt’ 99, vol. 1592, pp. 42–54, Springer Verlag, 1999.MathSciNetGoogle Scholar
  15. 15.
    S. Even, O. Goldreich, and A. Lempel, A Randomized Protocol for Signing Contracts, Advances in Cryptology: Proceedings of Crypto’ 83, Plenum Press, New York, pp. 205–210, 1983.Google Scholar
  16. 16.
    M. Fisher, S. Micali, and C. Racko., A Secure Protocol for the Oblivious Transfer, Journal of Cryptology, vol. 9, No. 3, pp. 191–195, 1996.CrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Franklin and M. Yung, Communication Complexity of Secure Computation, Proceedings of the 24th Annual Symposium on Theory of Computing, pp. 699–710, 1992.Google Scholar
  18. 18.
    O. Goldreich, S. Micali, and A. Wigderson, How to play ANY mental game or: A Completeness Theorem for Protocols with Honest Majority, Proceedings of 19th Annual Symposium on Theory of Computing, pp. 20–31, 1987.Google Scholar
  19. 19.
    W.-A. Jackson and K. Martin, A Combinatorial Interpretation of Ramp Schemes, Australasian Journal of Combinatorics, vol. 14, pp. 51–60, 1996.zbMATHMathSciNetGoogle Scholar
  20. 20.
    A. Hedayat, N.J.A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications, Springer Verlag, 1999.Google Scholar
  21. 21.
    J. Kilian, Founding Cryptography on Oblivious Transfer, Proceedings of 20th Annual Symposium on Theory of Computing, pp. 20–31, 1988.Google Scholar
  22. 22.
    M. Naor and B. Pinkas, Computationally Secure Oblivious Transfer, available at http://www.wisdom.weizmann.ac.il/naor/onpub.html
  23. 23.
    M. Naor and B. Pinkas, Efficient Oblivious Transfer Protocols, available at http://www.wisdom.weizmann.ac.il/naor/onpub.html
  24. 24.
    M. Rabin, How to Exchange Secrets by Oblivious Transfer, Technical Memo TR-81, Aiken Computation Laboratory, Harvard University, 1981.Google Scholar
  25. 25.
    D.R. Stinson, Some Results on Nonlinear Zig-zag Functions, The Journal of Combinatorial Mathematics and Combinatorial Computing, No. 29, pp. 127–138, 1999.Google Scholar
  26. 26.
    D.R. Stinson, Resilient Functions and Large Set of Orthogonal Arrays, Congressus Numerantium, Vol. 92, 105–110, 1993.MathSciNetGoogle Scholar
  27. 27.
    S. Wiesner, Conjugate Coding, SIGACT News, Vol. 15, pp. 78–88, 1983.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Paolo D’Arco
    • 1
  • Douglas Stinson
    • 2
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissi (SA)Italy
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooOntarioCanada

Personalised recommendations