Toward a Formal Macroset Theory

  • Manfred Kudlek
  • Carlos Martín-Vide
  • Gheorghe PĂun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2235)


A macroset is a (finite or infinite) set of multisets over a finite alphabet. We introduce a Chomsky-like hierarchy of multiset rewriting devices which, therefore, generate macrosets. Some results are proved about the power of these devices and some open problems are formulated. We also present an algebraic characterization of some of the macroset families as least fixed point solutions of algebraic systems of equations.


Turing Machine Mathematical Linguistics Algebraic Characterization Membrane Computing Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Banătre, A. Coutant, D. Le Metayer, A parallel machine for multiset transformationand its programming style, Future Generation Computer Systems, 4 (1988),133–144.CrossRefGoogle Scholar
  2. 2.
    J.P. Banătre, D. Le Metayer, The Gamma model and its discipline of programming,Science of Computer Programming, 15 (1990), 55–77.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    J. P. Banătre, D. Le Metayer, Gamma and the chemical reaction model: ten yearsafter, Coordination Programming: Mechanisms, Models and Semantics, ImperialCollege Press, 1996.Google Scholar
  4. 4.
    H.P. Barendregt, The Lambda Calculus; Its Syntaxand Semantics, North-Holland, Amsterdam, 1984.Google Scholar
  5. 5.
    T. Basten, Parsing partially ordered multisets, Intern. J. Found. Computer Sci.,8, 4 (1997), 379–407.zbMATHCrossRefGoogle Scholar
  6. 6.
    G. Berry, G. Boudol, The chemical abstract machine, Theoretical Computer Sci.,96 (1992), 217–248.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Colmerauer, Equations and inequalities on finite and finite trees, Proc. of Second Intern. Conf. on Fifth Generation Computer Systems, Tokyo, 1984, 85–99.Google Scholar
  8. 8.
    S. Crespi-Reghizzi, D. Mandrioli, Commutative Grammars, Calcolo, 13, 2 (1976),173–189.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, 1989.Google Scholar
  10. 10.
    J. Dassow, Gh Păun, A. Salomaa, Grammars with Controlled Derivations, in:Handbook of Formal Languages, vol. 2, p 101–154, Springer-Verlag, 1997.Google Scholar
  11. 11.
    S. Ginsburg, The Mathematical Theory of Context-free Languages, McGraw Hill,1966.Google Scholar
  12. 12.
    J.L. Gischer, The equational theory of pomsets, Theoretical Computer Sci., 61, 2–3(1988), 199–224.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    J.S. Golan, The Theory of Semirings with Application in Mathematics and TheoreticalComputer Science, Longman Scientific and Technical, 1992.Google Scholar
  14. 14.
    S. Gorn, Explicit definitions and linguistic dominoes, in Systems and ComputerScience (J. Hart, S. Takasu, eds.), Univ. of Toronto Press, Toronto, 1967, 77–115.Google Scholar
  15. 15.
    D.T. Hunyh, Commutative grammars: The complexity of uniform word problem,Inform. Control, 57 (1983), 21–39.CrossRefGoogle Scholar
  16. 16.
    J. Kortelainen, Properties of trios and AFLs with bounded or commutative generators,Mathematics, University of Oulu, No. 53, 1980.Google Scholar
  17. 17.
    W. Kuich, A. Salomaa, Semirings, Automata, Languages, EATCS Monographs onTheoretical Computer Science 5, Springer-Verlag, BerlinGoogle Scholar
  18. 18.
    M. Latteux, Cônes rationnels commutativement clos, R.A.I.R.O., 11, 1 (1977),29–51.zbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Latteux, Langages commutatifs, Publications de Laboratoire de Calcul del’Université des Sciences et Techniques de Lille, May 1978.Google Scholar
  20. 20.
    M. Latteux, Cônes rationnels commutatifs, Journal of Computer System Sciences,18 (1979), 307–333.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    S. Miyamoto, Fuzzy multisets and application to rough approximation of fuzzysets, Techn. Rep. Inst. of Inform. Sciences and Electronics, Univ. of Tsukuba,1SE-TR-96-136, June 1996, 1–10.Google Scholar
  22. 22.
    S. Miyamoto, Basic operations on fuzzy multisets, J. of Japan Soc. of Fuzzy Theoryand Systems, 8, 4 (1996).Google Scholar
  23. 23.
    S. Miyamoto, Fuzzy multisets with in finite collections of memberships, Proc. 7thIntern. Fuzzy Systems Ass. World. Congress (IFSA’97), June 1997, Prague, vol. I,61–66.Google Scholar
  24. 24.
    B. Li, Fuzzy bags and applications, Fuzzy Sets and Systems, 34 (1990), 61–71.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,61, 1 (2000), 108–143CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Gh. Păun, Computing with membranes. An introduction, Bulletin of the EATCS,67 (Febr. 1999), 139–152.zbMATHGoogle Scholar
  27. 27.
    Gh. Păun, Computing with membranes (P systems): Twenty six researchtopics, Auckland University, CDMTCS Report No 119, 2000(
  28. 28.
    Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New ComputingParadigms, Springer-Verlag, Heidelberg, 1998.Google Scholar
  29. 29.
    G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,Springer-Verlag, Berlin, 1997.zbMATHGoogle Scholar
  30. 30.
    Y. Suzuki, H. Tanaka, Symbolic chemical system based on abstract rewriting systemand its behavior pattern, Artificial Life Robotics, 1 (1997), 211–219.CrossRefGoogle Scholar
  31. 31.
    Y. Suzuki, H. Tanaka, Chemical evolution among artificial proto-cells, Proc. of Artificial Life VIII Conf., MIT Press, 2000Google Scholar
  32. 32.
    A. Syropoulos, A note on multi-sets, basic pairs and the chemical abstract machine,manuscript, 2000.Google Scholar
  33. 33.
    A. Syropoulos, Fuzzy sets and fuzzy multisets as Chu spaces, manuscript, 2000.Google Scholar
  34. 34.
    A. Syropoulos, Multisets and Chu Spaces, PhDThesis, Univ. of Xanti, Greece, inpreparation.Google Scholar
  35. 35.
    R. R. Yager, On the theory of bags, Intern. J. General Systems, 13 (1986), 23–37.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Manfred Kudlek
    • 1
  • Carlos Martín-Vide
    • 2
  • Gheorghe PĂun
    • 3
  1. 1.Fachbereich InformatikUniversität HamburgHamburgGermany
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  3. 3.Institute of Mathematics of the Romanian AcademyBucuresţiRomania

Personalised recommendations