Multiset Constraints and P Systems

  • Agostino Dovier
  • Carla Piazza
  • Gianfranco Rossi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2235)

Abstract

Multisets are the fundamental data structure of P systems. In this paper we relate P systems with the language and theory for multisets presented in [9.] This allows us, on the one hand, to define and implement P systems using multiset constraints in a constraint logic programming framework, and, on the other hand, to define and implement constraint solving procedures used to test multiset constraint satisfiability in terms of P systems with active membranes. While the former can be exploited to provide a precise formulation of a P system, as well as a working implementation of it, based on a first-order theory, the latter provides a way to obtain a P system for a given problem (in particular, NP problems) starting from a rather natural encoding of its solution in terms of multiset constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Apt. From Logic Programming to Prolog. International Series in Computer Science. Prentice Hall, 1997.Google Scholar
  2. 2.
    P. Arenas-Sánchez, F. J. López-Fraguas, M. Rodríguez-Artalejo Embedding Multiset Constraints into a Lazy Functional Logic LanguageIn C. Palamidessi, H. Glaser, K. Meinke, editors, Principles of Declarative Programming, LNCS 1490, Springer-Verlag, pp. 429–444, 1998.CrossRefGoogle Scholar
  3. 3.
    J. Bănatre and D. Le Métayer. Programming by Multiset Transformation. Communications of the ACM, 36(1):98–111. January 1993.CrossRefGoogle Scholar
  4. 4.
    G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer Science, vol. 96 (1992) 217–248.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J.-P. Bodeveix, C. Percebois, S. Majoul. An Object-Oriented Coordination Model based on Multiset Rewriting. In Proc. of Ninth International Conference on Parallel and Distributed Computing Systems. Dijon, France, 1996.Google Scholar
  6. 6.
    I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Relating Strands and Multiset Rewriting for Security Protocol Analysis In P. Syverson, ed., 13th IEEE Computer Security Foundations Workshop—CSFW’00, pp. 35–51, 2000.Google Scholar
  7. 7.
    P. Ciancarini, D. Fogli, and M. Gaspari. A Logic Language Based on GAMMA-like Multiset Rewriting. In R. Dyckho., H. Herre, P. Schroeder-Heister eds., Extensions of Logic Programming, 5th International Workshop, LNCS 1050, 1996, pp. 83–101.Google Scholar
  8. 8.
    E. Dantsin and A. Voronkov. A Nondeterministic Polynomial-Time Unification Algorithm for Bags, Sets and Trees. In W. Thomas ed., Foundations of Software Science and Computation Structure, LNCS Vol. 1578, pages 180–196, 1999.CrossRefGoogle Scholar
  9. 9.
    A. Dovier, A. Policriti, and G. Rossi. A uniform axiomatic view of lists, multisets, and sets, and the relevant unification algorithms. Fundamenta Informaticae, 36(2/3):201–234, 1998.MATHMathSciNetGoogle Scholar
  10. 10.
    A. Dovier, C. Piazza, and G. Rossi. A uniform approach to constraintsolving for lists, multisets, compact lists, and sets. Technical Report, Dipartimento di Matematica, Universit`a di Parma, no. 235, July 2000 (available at http://prmat.math.unipr.it/-gianfr/PAPERS/RRPR235.ps).
  11. 11.
    A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. log: A Language for Programming in Logic with Finite Sets. Journal of Logic Programming, 28(1):1–44, 1996.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic programming. ACM Transaction on Programming Language and Systems (TOPLAS), 22(5) 2000, pp. 861–931.CrossRefGoogle Scholar
  13. 13.
    G. Gupta and E. Pontelli. Optimization Schemas for Parallel Implementation of Nondeterministic Languages. Int. Parallel Proc. Symposium, IEEE, pp. 428–435, 1997.Google Scholar
  14. 14.
    C. Hankin, D. Le Métayer, and D. Sands. A Parallel Programming Style and Its Algebra of Programs. In Proc. Conf. on Parallel Architecture and Languages Europe (PARLE 93), vol. 694 of LNCS, 367–378, Springer-Verlag, Berlin, 1993.Google Scholar
  15. 15.
    J. Herbrand. Recherches sur la theorie de la demonstration. Master’s thesis, Universit’e de Paris, 1930. Also in Ecrits logiques de Jacques Herbrand, PUF, Paris, 1968.Google Scholar
  16. 16.
    J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of Logic Programming, 19-20:503–581, 1994.CrossRefMathSciNetGoogle Scholar
  17. 17.
    J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The Semantics of Constraint Logic Programs. Journal of Logic Programming 37 (1–3), 1–46, 1998.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    K. Marriott, B. Meyer, and K. B. Wittenburg. A survey of visual language specification and recognition. In K. Marriott and B. Meyer, editors, Visual Language Theory pages 5–85, Springer, 1998.Google Scholar
  19. 19.
    A. Mal’cev. Axiomatizable Classes of Locally Free Algebras of Various Types. In The Metamathematics of Algebraic Systems, Collected Papers, Ch. 23. North Holland, 1971.Google Scholar
  20. 20.
    A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Programming Languages and Systems 4 (1982), 258–282.MATHCrossRefGoogle Scholar
  21. 21.
    G. Păun. Computing with Membranes. Journal of Computer and System Science, 61(1):108–143, 2000.CrossRefMATHGoogle Scholar
  22. 22.
    G. Păun. Attacking NP Complete Problems. Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.MathSciNetMATHGoogle Scholar
  23. 23.
    G. Rossi. The Languages CLP(SET) and CLP(BAG) User Manuals and Running Interpreters. In http://prmat.math.unipr.it/-gianfr/setlog.Home.html.
  24. 24.
    A. Tzouvaras. The Linear Logic of Multisets. Logic Journal of the IGPL, Vol. 6, No. 6, pp. 901–916, 1998.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Agostino Dovier
    • 1
  • Carla Piazza
    • 2
  • Gianfranco Rossi
    • 3
  1. 1.Dip. di InformaticaUniv. di VeronaVeronaItaly
  2. 2.Dip. di Matematica e InformaticaUniv. di UdineUdineItaly
  3. 3.Dip. di MatematicaUniv. di ParmaParmaItaly

Personalised recommendations