Tolerance Multisets

  • Solomon Marcus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2235)

Abstract

A multiset involves an equivalence relation between the copies of the same element. However, in many cases the binary relation relating an element to its copies is not exactly an equivalence one, but a weaker relation, in most cases a tolerance (i.e., reflexive and symmetric) relation, leading to a natural extension of multisets: tolerance multisets.

References

  1. 1.
    E. Čech, Topological Spaces, The Publishing House of the Czech Academy, Prague,1966.MATHGoogle Scholar
  2. 2.
    A. Dovier, A. Policrity, G. Rossi, A uniform axiomatic view of lists, multisets, andsets, and the relevant unification algorithms, Fundamenta Informaticae, 36, 2/3(1998), 221–234.Google Scholar
  3. 3.
    E. Ehrlich, S. Berg Flexner, G. Garruth, J.M. Hawkins, Oxford American Dictionary,Avon Books, Oxford Univ. Press, New York, 1980.Google Scholar
  4. 4.
    E. Genouvrier, C. Desirat, T. Horde, Nouveau Dictionnaire des Synonymes, Librairie Larousse, Paris, 1980.Google Scholar
  5. 5.
    Z.S. Harris, Structural Linguistics, Chicago Univ. Press, Chicago, 1961.Google Scholar
  6. 6.
    S. Kanger, The notion of a phoneme, Statistical Methods in Linguistics, 3 (1964),43–48.Google Scholar
  7. 7.
    D. Knuth, The Art of Computer Programming, vol. 2, Seminumerical Algorithms,Addison Wesley, Reading, Mass., 1985.Google Scholar
  8. 8.
    M. Kudlek, C. Martin-Vide, Gh. Păun, Toward FMT (Formal Macroset Theory),in Pre-proceedings of the Workshop on Multiset Processing, Curtea de Argesc Romania,2000(C.S. Calude, M.J. Dinneen, Gh. Păun, eds.), CDMTCS Res. Report 140, Auckland Univ., 2000, 149–158.Google Scholar
  9. 9.
    Z. Manna, R. Waldinger, The Logical Basis for Computer Programming, vol. 1,2, Addison Wesley, Reading,Mass., 1985.MATHGoogle Scholar
  10. 10.
    S. Marcus, Sur un ouvrage de Stig Kanger concernant le phoneme, Statistical Methodsin Linguistics, 3 (1964), 43–48.Google Scholar
  11. 11.
    S. Marcus, Introduction Math’ematique à la Linguistique Structurale, Dunod, Paris,1967.Google Scholar
  12. 12.
    S. Marcus, Mathematische Poetik, Athen↑m, Frankfurt am Main, 1973.Google Scholar
  13. 13.
    S. Marcus, Interplay of innate and acquired in some mathematical models of languagelearning processes, Revue Roumaine de Linguistique, 34 (1989), 101–116.Google Scholar
  14. 14.
    S. Marcus, Tolerance rough sets, Čech topologies, learning processes, Bull. PolishAcademy of Science. Technical Science, 42, 3 (1994), 471–487.MATHGoogle Scholar
  15. 15.
    Z. Pawlak, Theoretical Aspects of Reasoning About Data, Kluwer, Dordrecht, 1991.Google Scholar
  16. 16.
    Gh. Paun, Computing with membranes, Journal of Computer and System Sciences,61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No208, 1998 (http://www.tucs..).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. Pogonowski, Tolerance Spaces with Applications in Linguistics, Poznan UniversityPress, Poznan, 1981.Google Scholar
  18. 18.
    A. Syropoulos, Mathematics of multisets, in Pre-proceedings of the Workshop onMultiset Processing, Curtea de Argesc Romania, 2000 (C.S. Calude, M.J. Dinneen, Gh. Păun, eds.), CDMTCS Res. Report 140, Auckland Univ., 2000, 286–295.Google Scholar
  19. 19.
    A. Tzouvaras, The linear logic of multisets, Logic Journal of GPL, 6, 6 (1998),901–916.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R.R. Yager, On the theory of bags, Intern. Journal of General Systems, 13 (1986),23–37.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Solomon Marcus
    • 1
  1. 1.Romanian Academy MathematicsBucharestRomania

Personalised recommendations