The Nearest Neighbor

  • Helmut Alt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2122)


The nearest neighbor problem is defined as follows: Given a metric space X and a fixed finite subset SX of n “sites”, preprocess S and build a data structure so that queries of the following kind can be answered efficiently: Given a point q ∈ X find one of the points p ∈ S closest to q (see Figure 1).
Fig. 1.

The nearest-neighbor problem in the plane with Euclidean distance


Voronoi Diagram Query Point Query Time Query Pattern Voronoi Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Alt, L. Heinrich-Litan, U. Hoffmann. Exact ∓∞ nearest neighbor search in high dimensions. Technical report, Institute for Computer Science, FU Berlin, in preparation.Google Scholar
  2. 2.
    S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 271–280, 1993.Google Scholar
  3. 3.
    F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991.Google Scholar
  4. 4.
    J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University Press, UK, 1998. Translated by Hervé Brönnimann.zbMATHGoogle Scholar
  5. 5.
    L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput., 17:830–847, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    L. Devroye and T. Wagner. Nearest neighbor methods in discrimination. In North-Holland, editor, Handbook of Statistics, volume 2. P.R. Krishnaiah, L.N. Kanal, 1982.Google Scholar
  7. 7.
    D. P. Dobkin and R. J. Lipton. Multidimensional searching problems. SIAM J. Comput., 5:181–186, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.Google Scholar
  9. 9.
    R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. WileyInterscience, New York, 1973.zbMATHGoogle Scholar
  10. 10.
    M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system. Computer, 28:23–32, 1995.CrossRefGoogle Scholar
  11. 11.
    P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some graphs. Journal of Combinatorial Theory B, 44:355–362, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Press, 1991.Google Scholar
  13. 13.
    L. Heinrich-Litan. PhD thesis, FU Berlin, in preparation.Google Scholar
  14. 14.
    P. Indyk. Dimensionality reduction techniques for proximity problems. In Proceedings, ACM Symposium on Data Structures and Algorithms, SODA 2000, pages 371–378, 2000.Google Scholar
  15. 15.
    P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput., page to appear, 1998.Google Scholar
  16. 16.
    W. Johnson and G. Schechtman. Embedding ∓pm into ∓1n. Acta Mathematica, 149:71–85, 1985.CrossRefMathSciNetGoogle Scholar
  17. 17.
    D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12:28–35, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    R. Klein. Algorithmische Geometrie. Addison-Wesley, Bonn, 1997.zbMATHGoogle Scholar
  19. 19.
    J. Kleinberg. Two algorithms for nearest-neighbor search in high dimension. In Proc. 29th Annu. ACM Sympos. Theory Comput., pages 599–608, 1997.Google Scholar
  20. 20.
    D. Knuth. The art of computer programming. Addison-Wesley, 1973.Google Scholar
  21. 21.
    E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high dimensional spaces. In Proc. 30th Annu. ACM Sympos. Theory Comput., page to appear, 1998.Google Scholar
  22. 22.
    N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15:215–245, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    S. Meiser. Point location in arrangements of hyperplanes. Inform. Comput., 106:286–303, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge MA, 1969.zbMATHGoogle Scholar
  25. 25.
    A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 1992.zbMATHGoogle Scholar
  26. 26.
    A. W. M. Smeulders and (eds.). Image databases and multi-media search. In Proceedings of the First International Workshop, IDB-MMS ‘96, Amsterdam, 1996. Amsterdam University Press.Google Scholar
  27. 27.
    C. J. van Rijsbergen. Information Retrieval. Butterworths, 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Helmut Alt
    • 1
  1. 1.Department of Mathematics and Computer ScienceFree University of BerlinBerlinGermany

Personalised recommendations